NPS55-90-20 NAVAL POSTGRADUATE SCHOOL Monterey, California

LATENT FACTOR MODELS AND ANALYSES FOR OPERATOR RESPONSE TIMES

Donald P. Gaver I. G. O'Muircheartaigh

September 1990

Approved for public release; distribution is unlimited. Prepared for: Naval Postgraduate School,

ey, CA 93955

FedDocs D 208.14/2 NPS-55-90-20

110

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr. Superintendent

Harrison Shull Provost

This report was prepared in conjunction with research funded under the Naval Postgraduate School Research Council Research Program.

This report was prepared by:

DUCERY KNOX LIBRARY NAVA: FOSTGRADUATE SCHOOL MONTEREY CA 93943-5101

lisification of this page

f:d

REPORT DOCUMENTATION PAGE

	REFORT DOCOM	LITTINE OIT & TRUE				
curity Classification UNC	LASSIFIED	1b Restrictive Marking	s			
t Classification Authority		3 Distribution Availab	oility of Re	port		
sfication/Downgrading Sched	ule	Approved for publ	ic release	; distribu	ation is unlimited	
g Organization Report Numb	er(s) NPS55-90-20	5 Monitoring Organiza	tion Report	Number((s)	
Performing Organization tgraduate School	6b Office Symbol (If Applicable) OR	7a Name of Monitoring	Organizati	on		
(city, state, and ZIP code) , CA 93943-5000		7b Address (city, state,	and ZIP cod	le)		
Funding/Sponsoring Organizatio	n 8b Office Symbol (If Applicable)	9 Procurement Instrum	ent Identific	cation Nur	nber	
Postgraduate School		0&MN, Direct F	unding			
(city, state, and ZIP code) M	onterey, California	10 Source of Funding N	lumbers			
i de la companya de l		Program Element Number	Project No	Task No	Work Unit Accession No	
ey, CA 93943						
clude Security Classification)	and Analyses for op	erator Re	sponse '	Times		
Author(s) Gaver, D. P.	and O'Muircheartaigh,	I.G.				
of Report 13b Time al From	Covered To	14 Date of Report (year, month,day) 15 Page Count 1990, September 15 Count				
nentary Notation The views position of the Departm	expressed in this pape ent of Defense or the U	r are those of the aut I.S. Government.	hor and d	o not re	flect the official	
Codes 18 S	ubject Terms (continue on r	everse if necessary and ia	lentify by bl	lock numb	er)	
Jp Subgroup Late	ent factor models; extrem	me-value distribution	; Weibull	distribu	tion; bootstrap;	
may	imum likelihood estima	ation; operator respor	ise times			

ct (continue on reverse if necessary and identify by block number

models are presented for the response times of different operators to different tasks where response is by one or more cues provided by the system. One model for the log-response times is a mixed or latent del with unequal case fixed effects and variances. The other model for the log-response times is a nonlog-extreme-value model. Procedures for estimating the parameters by maximum likelihood are

1. The models are used to analyze response time data from simulator experiments involving nuclear ant operators performing certain safety-related tasks. The findings of the models are critiqued and ons to risk analysis are sketched.

bution/Availability of Abstract	21 Abstract Security Classific	ation
lassified/unlimited same as report DTIC users	Unclassified	
e of Responsible Individual aver	22b Telephone (Include Area co (408) 646-2605	de) 22c Office Symbol OR/Gv
1473, 84 MAR 83 APR edition n	nay be used until exhausted	security classification of this page
All other of	editions are obsolete	Unclassified

LATENT FACTOR MODELS AND ANALYSES FOR OPERATOR RESPONSE TIMES

D. P. Gaver Department of Operations Research Naval Postgraduate School Monterey, CA 93943

> I. G. O'Muircheartaigh University College Galway, Ireland

0. INTRODUCTION, BACKGROUND, AND SUMMARY

There are many situations in which an operator (single individual, or group or crew) is confronted with a somewhat complex task that must be accomplished within prescribed time limits. The task actually often initially requires diagnostic steps followed by action. In some cases the diagnostic steps are stimulated by a cue event, leading to probing actions intended to reveal the correctness of a tentative diagnosis, followed by observation and interpretation of system response, in turn followed by viewpoint revision and further action. While it is intriguing to attempt to model response in such detailed terms, this paper does not embark on that enterprise. Rather, we provide and analyze models for the resulting overall response time of different operators to different tasks where response is initiated by one or more cues provided by the system. Two factoranalytic models are presented along with likelihood estimation procedures. The latter are then employed to analyze data sets from typical exercises conducted at simulators used for training nuclear power plant operators; their identities are kept anonymous. (The findings of the model are critiqued, and applications to risk analysis are sketched.)

It is believed that similar models will be useful for summarizing the behavior of operators or crews in other situations, both military and otherwise. For example, application to military tank driver performance is envisioned.

1. A MIXED OR LATENT FACTOR MODEL WITH THE UNEQUAL CASE FIXED EFFECTS AND VARIANCES (LOG N MODEL).

Consider this linear model of mixed type:

$$Y_{ik} = \mu + \nu_k + \omega_i + \epsilon_{ik} \qquad i = 1, 2, \dots I$$

$$k = 1, 2, \dots K.$$
 (1)

where $Y_{ik} = \ln T_{ik}$ with T_{ik} being the time for crew *i* to respond to situation *k*; μ and ν_k are fixed constants (effects), and $\omega_i \sim \text{HDN}(0, \sigma_{\omega}^2)$, $\epsilon_{ik} \sim \text{HDN}(0, \sigma_k^2)$, are, respectively, the latent random component that "individualizes" case (individual, crew, etc.) *i*, and the random variation displayed by any individual on situation (task, problem, etc.) *k*. It is assumed that each case occurs in conjunction with each situation (e.g. a person confronts a particular problem) just once in the data set to be modelled. In practical circumstances, some such individual interactions may be missing for reasons unrelated to individuals and situations, a problem that is deferred for the present; see Appendix A and B.

As implied, the model described may well be of interest when data pertaining to human performance are to be analyzed, but should also be of use elsewhere. The K tasks or items are allowed to have their own fixed response properties, described by (ν_k, σ_k^2) ; this pair will be referred to as a *task signature*. The usual mixed ANOVA model formulation assumes $\sigma_k^2 = \sigma^2$, constant for all k (see Scheffé (1959)), as is reasonable when measurement error is represented.

Note that because of the assumption of possibly unequal σ_k 's a fixed- ω_i model cannot be usefully estimated by likelihood. Consequently the above randomeffect model has been introduced, and fitted to data. As will be apparent, it is possible to estimate the posterior density for ω_i using Bayes' formula in the style of empirical Bayes; the mean of the resulting Normal/Gaussian density $\hat{E}[\omega_i|\text{data}, \log N \mod el]$, is available as an estimate of the ith crew effect if so desired.

That the above setup is a latent factor model has been remarked to us by Professor T. W. Anderson; see Anderson (1988) Chapter 14 for relevant coverage in the Normal/Gaussian case. Brillinger and Preisler (1983) survey various other latent factor data-analytical studies in non-Gaussian settings; this includes a detailed discussion of a latent factor Poisson model for counting data. Brillinger's paper is interesting in that it suggests examining goodness of model fit by "uniform residuals," a procedure considered in our study as well.

Fitting the LOG N model by likelihood requires iterative calculations; the setup is described in the next section. In case one wishes to "robustify" the formulation, perhaps by introducing more outlier-prone specifications such as the Student t or Tukey density for ω_i then more numerical effort, or approximation is required. Use of the Laplace approximation together with Gauss-Hermite integration may well turn out to be useful; see Gaver and O'Muircheartaigh (1987), and Gaver, Jacobs and O'Muircheartaigh (1990). In a later section a totally non-Normal/Gauss model for operator response times is introduced and fitted.

2. FITTING THE LOG-NORMAL MODEL BY MAXIMUM LIKELIHOOD

In the model (1) the individualizing case effect, ω_i for case *i* is viewed as a latent or unobserved rv whose effect on the Y_{ik} observable is indirect. What is the probability distribution of $Y_{ik}, k = 1, 2, ..., K$ in terms of the unknown parameters? Clearly it is multivariate normal since ω_i and ϵ_{ik} occur as a sum; the density for case (crew) *i* is, by conditional independence, given ω_i ,

$$f_{\underline{Y}_{i}}(\underline{y}_{i};\mu,\underline{\nu},\omega_{i}) = \prod_{k=1}^{K} \frac{e^{-\frac{1}{2}(y_{ik}-\mu-\nu_{k}-\omega_{i})^{2}/\sigma_{k}^{2}}}{\sqrt{2\pi}\sigma_{k}}$$

$$= \frac{e^{-\frac{1}{2}\sum_{k=1}^{K}(y_{ik}-\mu-\nu_{k}-\omega_{i})^{2}/\sigma_{k}^{2}}}{(\sqrt{2\pi})^{K}\prod_{k=1}^{K}\sigma_{k}}$$
(2)

To obtain the unconditional density of \underline{y}_i remove the condition on $\omega_i :$

$$f_{\underline{Y}}\left(\underline{y}_{i};\mu,\underline{\nu}\right) = \int_{-\infty}^{\infty} f_{\underline{Y}_{i}}\left(\underline{y}_{i};\mu,\underline{\nu},\omega\right) e^{-\frac{1}{2}\omega^{2}/\sigma_{\omega}^{2}} \frac{d\omega}{\sqrt{2\pi\sigma_{\omega}}}$$
(3)

The calculation needed ("completion of the square" in the exponent) can be expeditiously performed as follows. Recognize that the exponent is quadratic in ω ; put

$$-\frac{1}{2}\left(\frac{\overline{\omega}_{i}-\omega}{\tau}\right)^{2}-\frac{1}{2}\ K_{i}=-\frac{1}{2}\ \sum_{k=1}^{K}\ \left(y_{ik}-\mu-\nu_{k}-\omega\right)^{2}/\sigma_{k}^{2},$$
(4)

 K_i being independent of ω . To find $\overline{\omega}_i, \tau^2$, and K_i differentiate (2.3) re ω and equate coefficients of ω and 1:

$$\frac{(\overline{\omega}_i - \omega)}{\tau^2} = \sum_{k=1}^K \left(y_{ik} - \mu - \nu_k - \omega \right) / \sigma_k^2, \tag{5}$$

so, from the ω -term,

$$1/\tau^2 = \sum_{k=1}^{K} 1/\sigma_k^2 \tag{6}$$

4

while from the 1-term

$$\overline{\omega}_{i}/\tau^{2} = \sum_{k=1}^{K} \left(y_{ik} - \mu - \nu_{k} \right) / \sigma_{k}^{2}, \tag{7}$$

giving

$$\overline{\omega}_{i} = \sum_{k=1}^{K} (y_{ik} - \mu - \nu_{k}) W_{k} \equiv y_{i} - (\mu + \nu_{k})$$
(8)

where $W_k = (1/\sigma_k^2) \tau^2 = (1/\sigma_k^2) / \sum_{l=1}^{K} 1/\sigma_l^2$; y_i , and ν , are thus W_k -weighted averages. Substitution into (4) gives

$$K_{i} = \sum_{k=1}^{K} \left(y_{ik} - \mu - \nu_{k} - \overline{\omega}_{i} \right)^{2} / \sigma_{k}^{2}$$

$$= \sum_{k=1}^{K} \left[y_{ik} - \mu - \nu_{k} - \sum_{k=1}^{K} \left(y_{ik} - \mu - \nu_{k} \right) W_{k} \right]^{2} 1 / \sigma_{k}^{2} \qquad (9)$$

$$= \sum_{k=1}^{K} \left[\left(y_{ik} - y_{i.} \right) - \left(\nu_{k} - \nu_{.} \right) \right]^{2} 1 / \sigma_{k}^{2}.$$

Now from (2)

$$f_{\underline{Y}_{i}}(\underline{y}_{i};\mu,\underline{\nu},\underline{\sigma}^{2},\sigma_{\omega}^{2}) = e^{-\frac{1}{2}K_{i}} \int_{\infty}^{\infty} \frac{e^{-\frac{1}{2}(\overline{\omega}_{i}-\omega)^{2}/\tau^{2}} e^{-\frac{1}{2}\omega^{2}/\sigma_{\omega}^{2}}}{\left(\sqrt{2\pi}\right)^{K} \left(\prod_{k=1}^{K}\sigma_{k}\right)\sqrt{2\pi} \sigma_{\omega}} d\omega,$$
(10)

a familiar convolution, from which

$$f_{\underline{Y}_{i}}(\underline{y}_{i};\mu,\underline{\nu},\underline{\sigma}^{2},\sigma_{\omega}^{2}) = \frac{e^{-\frac{1}{2}K_{i}}e^{-\frac{1}{2}(\overline{\omega}_{i})^{2}/(\tau^{2}+\sigma_{\omega}^{2})}}{\left(\sqrt{2\pi}\right)^{K}\left(\prod_{k=1}^{K}\sigma_{k}\right)\sqrt{2\pi}\sqrt{\tau^{2}+\sigma_{\omega}^{2}}}\tau.$$
(11)

Thus the likelihood of $\mu,\underline{\nu},\underline{\sigma}^2,\sigma_\omega^2$ is proportional to

$$L\left(\mu,\underline{\nu},\underline{\sigma}^{2},\sigma_{\omega}^{2};\underline{y}\right) = \prod_{i=1}^{l} \frac{e^{-\frac{1}{2}K_{i}}e^{-\frac{1}{2}(\overline{\omega}_{i})^{2}/(\tau^{2}+\sigma_{\omega}^{2})}}{\left(\prod_{k=1}^{K}\sigma_{k}\right)\sqrt{\tau^{2}+\sigma_{\omega}^{2}}}\tau$$
(12)

and hence the log-likelihood, *l*, may be expressed as

$$2 l(\mu, \underline{\nu}, \underline{\sigma}^{2}, \sigma_{\omega}^{2}; \underline{y}) = I \ln \tau^{2} - I In(\tau^{2} + \sigma_{\omega}^{2}) - \sum_{i=1}^{I} K_{i} - \sum_{i=1}^{I} (\bar{\omega}_{i})^{2} / (\tau^{2} + \sigma_{\omega}^{2})$$
(13)

Differentiation gives these estimates:

$$\frac{\partial l}{\partial (\nu_k - \nu_{\cdot})} = 0 = \sum_{i=1}^{l} \left[\left(\mathcal{Y}_{ik} - \overline{\mathcal{Y}}_{i\cdot} \right) - \left(\nu_k - \nu_{\cdot} \right) \right] \left(1/\sigma_k^2 \right), \tag{14}$$

so

$$\nu_k - \nu_k = \frac{1}{I} \sum_{i=1}^{I} y_{ik} - \frac{1}{I} \sum_{i=1}^{I} \sum_{k=1}^{K} y_{ik} W_k$$
(15)

$$\equiv (y_{\cdot k} - \overline{y}_{\cdot \cdot}).$$

Next,

$$\frac{\partial l}{\partial (\mu + \nu_{\cdot})} = 0 = \frac{1}{\tau^2 + \sigma_{\omega}^2} \sum_{i=1}^{I} (y_i - (\mu + \nu_{\cdot}))$$
(16)

so

$$\mu + \nu. = \overline{y}.. \tag{17}$$

These of course closely resemble conventional ANOVA estimates.

When estimating variances it is convenient to reparameterize in terms of precision: $p_k = 1/\sigma_k^2$, $p = 1/\tau^2 = \sum_{k=1}^{K} 1/\sigma_k^2 = \sum_{k=1}^{K} p_k$.

Then

$$\frac{\partial l}{\partial p_k} = 0 = -\frac{I}{p} + \frac{I}{p_k} - \frac{-(1/p)^2}{1/p + \sigma_\omega^2} - \Delta_I^2(k) - \frac{(-1)\left(-(1/p)^2\right)}{\left(1/p + \sigma_\omega^2\right)^2} (\overline{\omega})^2$$
(18)

where

$$\Delta_I^2(k) = \sum_{i=1}^{I} \left[(y_{ik} - y_{i.}) - (y_{\cdot k} - \overline{y}_{\cdot \cdot}) \right]^2$$
(19)

and

$$\left(\overline{\omega}\right)^2 = \sum_{i=1}^{I} \left(\overline{\omega}_i\right)^2.$$
(20)

Next

$$\frac{\partial l}{\partial \sigma_{\omega}^2} = 0 = -I \frac{1}{\tau^2 + \sigma_{\omega}^2} + \frac{\left(\overline{\omega}\right)^2}{\left(\tau^2 + \sigma_{\omega}^2\right)^2},\tag{21}$$

yields

$$\frac{1}{p} + \sigma_{\omega}^2 = \frac{1}{I} (\overline{\omega})^2 = \frac{1}{I} \sum_{i=1}^{I} (\overline{\omega}_i)^2; \qquad (22)$$

introduction of (21) into (18) simplifies the latter to

$$\frac{1}{p_k} = \frac{1}{I} \ \Delta_I^2 \ (k) + \frac{1}{p}, \qquad k = 1, 2, \dots, K.$$
(23)

The system (15), (16), (22) and (23) must be solved iteratively. Begin by simply fitting as if $\sigma_k^2 = \sigma^2$ to estimate $\mu(1), \nu_k(1), \omega(1)$, and obtain

$$\hat{\sigma}_k^2(1) = \frac{1}{I-1} \sum_{i=1}^{I} (y_{ik} - \hat{\mu}(1) - \hat{\nu}_k(1) - \omega_i(1))^2$$
(24)

from which compute $\widehat{W}_k(2) = (1/\hat{\sigma}_{\omega}^2(1)) / (\sum_{l=1}^{K} 1/\hat{\sigma}_l^2)$. Next calculate $\nu_k - \nu_*(2) \equiv y_{\cdot k}(2) - \overline{y}_*(2)$ using $\widehat{W}_k(2)$ in (15), and $\mu + \nu(2) \equiv \overline{y}_*(2)$ from (16). It is now possible to evaluate $\Delta_I^2(k;2)$ from (19), and $(\overline{\omega})^2(2)$ from (20), and hence $\hat{p}_k(2)$ and $\hat{p}(2)$ from (23), after which $\sigma_{\omega}^2(2)$ from (22). Now recompute $\widehat{W}_k(3) = (1/\hat{\sigma}_k^2(2)) / (\sum_{l=1}^{K} 1/\hat{\sigma}_l^2) = \hat{p}_k(2)/\hat{p}(2)$, and so repeat iteratively until convergence is achieved. A solution procedure based on Newton-Raphson iteration has also been obtained; agreement of the two procedures is generally good.

3. LOG-EXTREME-VALUE MODEL (THE LOG EV MODEL)

An alternative to the previous model that may be attractive is the following setup:

- (a) T_{ik} is distributed according to a two-parameter Weibull; then it follows mathematically that
- (b) $Y_{ik} = \ln T_{ik}$ has the extreme-value distribution: $1 - \exp\left[-\theta_i \exp\left(\left(y_{ik} - \eta_k\right)/\xi_k\right)\right]$, with probability density function $f_{Y_{ik}}\left(y_{ik}; \eta_k, \xi_k; \theta_i\right) =$ $\exp\left[-\theta_i \exp\left(\left(y_{ik} - \eta_k\right)/\xi_k\right)\right] \theta_i \exp\left(\left(y_{ik} - \eta_k\right)/\xi_k\right) \frac{1}{\xi_k}$ (25)

Note the occurrence of parameter θ_i , which is intended to represent crew effect, i.e. θ_i is a way of individualizing crews comparable to the action of ω_i in the previous model. Values of θ_i are viewed as randomly selected latent factors as were the ω_i values. The nature of the θ_i contribution differs from ω_i in this model: whereas in the LOG N model ω_i acted purely additively (on the log scale) to affect the center (mean of logged response times) in a manner common to all tasks, in the LOG EV model it can be seen that logged times are represented as

$$Y_{ik} = \eta_k + \xi_k [(-\ln \theta_i) + \epsilon_{ik}], \qquad (26)$$

 ϵ_{ik} having standardized extreme value df. For the present model, (25) or (26),

$$E\left[Y_{ik}|\theta_i\right] = \eta_k - 0.5772\xi_k - \xi_k \ln \theta_i \tag{27}$$

$$Var[Y_{ik}|\theta_i] = \frac{\pi^2}{6}\xi_k^2 \simeq 1.6449\xi_k^2$$
(28)

which permit initial parameter estimation by moments and facilitates comparison with the results of alternative models. Expression (26) implies that responses to tasks are affected differentially: the greater the natural variation in performing a task by crews (measured by ξ_k for task k) the greater the "average" effect on task duration due to crew effect. This is a specific form of interaction between crew and task effects that may (or may not) be reasonable in particular circumstances.

Conditional on θ_i , the crew *i*'s response, \underline{Y}_i , on *K* different tasks has joint density function

$$f_{\underline{Y}_{i}}\left(\underline{y}_{i}; \underline{\eta}, \underline{\xi}, \theta_{i}\right) = \prod_{k=1}^{K} f_{Y_{ik}}\left(y_{ik}; \eta_{k}, \xi_{k}; \theta_{i}\right),$$
(29)

where conditional independence is assumed. In order to obtain the unconditional joint density of response \underline{Y}_i remove the condition on θ_i by integrating out; this step corresponds to (10). Thus

$$f_{\underline{Y}_{i}}\left(\underline{y}_{i}; \underline{\eta}, \underline{\xi}\right) = E_{\theta_{i}}\left\{e^{-\theta_{i}}c_{i}\theta_{i}^{K}\right\}d_{i},$$
(30)

where

$$c_{i} = \sum_{k=1}^{K} \exp\left(\left(y_{ik} - \eta_{k}\right) / \xi_{k}\right)$$
(31)

and

$$d_{i} = \exp\left(\sum_{k=1}^{K} \left(y_{ik} - \eta_{k}\right) / \xi_{k}\right) \prod_{k=1}^{K} \left(1 / \xi_{k}\right)$$
(32)

The above model closely resembles one introduced by Crowder (1985) and Crowder and Kimber (1989). However, ours deals with the log time, and hence is a location-scale model that more closely compares to the additive log-normal model, although the η_k is not generally a mean, nor is ξ_k a standard deviation.

4. GAMMA VARIATION FOR θ

A search for mathematical tractability suggests that variation in θ be described by a gamma density:

$$\theta \sim e^{-\theta/\beta} \frac{(\theta/\beta)^{1/\beta} - 1}{\Gamma(1/\beta)} \cdot \frac{1}{\beta} \equiv Gam\left(\frac{1}{\beta}, \frac{1}{\beta}\right)$$
(33)

so $E[\theta] = 1$ and $Var[\theta] = \beta$, and from which the joint density of observations by crew *i* is

$$f_{\underline{Y}_{i}}\left(\underline{y}_{i},\underline{\eta},\underline{\xi}\right) = \frac{\Gamma(K+1/\beta)}{\Gamma(1/\beta)} \left(\frac{1}{1+\beta c_{i}}\right)^{K+1/\beta} \beta^{K} d_{i}.$$
 (34)

The likelihood associated with I independent crews is

$$L\left(\underline{\eta},\underline{\xi},\underline{\beta};y\right) = \left(\frac{\Gamma(K+1/\beta)}{\Gamma(1/\beta)}\beta^{K}\right)^{I}\prod_{i=1}^{I}\left(\frac{1}{1+\beta c_{i}}\right)^{K+1/\beta}d_{i}$$
(35)

٥r

$$l = \ln L = IK \ln \beta + I \ln \left(\Gamma(K + 1/\beta) / \Gamma(1/\beta) \right)$$

$$-(K + 1/\beta) \sum_{i=1}^{I} \ln(1 + \beta c_i) + \sum_{i=1}^{I} \ln d_i.$$
(36)

3

After arrangement and re-parameterization so that $\phi_k = \ln \xi_k$ the log-likelihood

becomes

$$l = I \sum_{k=0}^{K-1} \ln(k+1/\beta) - (K+1/\beta) \sum_{i=1}^{I} \ln(1+\beta c_i) + \sum_{i=1}^{I} \sum_{k=1}^{K} (y_{ik} - \eta_k) \exp(-\phi_k) - I \sum_{k=1}^{K} \phi_k \quad .$$
(37)

5. FITTING THE LOG-EXTREME VALUE (LOG-EV) MODEL BY MAXIMUM LIKELIHOOD

To obtain the maximum likelihood estimates of the parameters we iteratively solve the following equations, for which k = 1, 2, ..., K throughout:

$$\partial l/\partial \beta = 0,$$

 $\partial l/\partial \eta_k = 0,$ (38)
 $\partial l/\partial \phi_k = 0.$

One Newton-Raphson iteration only is applied to each equation, after which the entire process is repeated until convergence. Typically, only two or three repetitions are required.

We record the derivatives needed for the above process.

$$\frac{\partial l}{\partial \beta} = -(K + 1/\beta) \sum_{i=1}^{I} (c_i/(1 + \beta c_i)) + (1/\beta^2) \sum_{i=1}^{I} \ln(1 + \beta c_i) -I \sum_{k=0}^{K-1} 1/\beta(1 + k\beta)$$
(39)

$$\frac{\partial l}{\partial \eta_k} = (K\beta + 1)\exp(-\phi_k) \sum_{i=1}^{I} e^{r_{ik}} / (1 + \beta c_i) - Ie^{-\phi_k}$$
(40)

where $r_{ik} = (y_{ik} - \eta_k)/\xi_k$, a residual; finally

$$\frac{\partial l}{\partial \phi_k} = (K\beta + 1) \sum_{i=1}^{I} r_{ik} e^{r_{ik}} / (1 + \beta c_i) - \sum_{i=1}^{I} r_{ik} - I.$$
(41)

The second derivatives are

$$\frac{\partial^2 l}{\partial \beta^2} = IK/\beta^2 + (K+1/\beta) \sum_{i=1}^{I} c_i^2/(1+\beta c_i)^2 + (2/\beta^2) \sum_{i=1}^{I} c_i/(1+\beta c_i) -(2/\beta^3) \sum_{i=1}^{I} \ln(1+\beta c_i) - (I/\beta^4) \sum_{k=0}^{K-1} (k+1/\beta)^{-2} -(2I/\beta^3) \sum_{k=0}^{K-1} (k+1/\beta)^{-1},$$
(42)

$$\frac{\partial^2 l}{\partial \eta_k^2} = (1+K\beta)e^{-2\phi_k} \sum_{i=1}^{I} \left\{ \left(e^{r_{ik}}/(1+\beta c_i) \right) \left[\left(\beta e^{r_{ik}}/(1+\beta c_i) \right) - 1 \right], (43) \right\}$$

$$\frac{\partial^2 l}{\partial \phi_k^2} = (1 + K\beta) \sum_{i=1}^{I} \left\{ \beta \left(r_{ik} e^{r_{ik}} / (1 + \beta c_i) \right)^2 - e^{r_{ik}} r_{ik} (1 + r_{ik}) / (1 + \beta c_i) \right\} + \sum_{i=1}^{I} r_{ik}.$$
(44)

In order to use the inverse of the Fisher information matrix to provide standard errors of the parameter estimates all cross-partial derivatives are required; we omit recording these in the interest of brevity; the expressions may be obtained from the authors. Our numerical experience has been that standard errors obtained from Fisher information tend to be too small, as judged from bootstrapping approaches next to be described.

6. BOOTSTRAPPING

A modern alternative for obtaining standard errors and approximate confidence limits is the *parametric bootstrap* of Efron (1979; esp. Remark K, p.25). This procedure has recently been applied to failure data in the context of the Challenger disaster by Dalal, Fowlkes and Hoadley (1988) and goes as follows: put $\underline{\theta} = (\phi_{\omega}^2, \mu, \nu_i, \nu_2, ...\nu_K; \sigma_1^2, ..., \sigma_K^2)$ in Model LOG N, and $(\beta; \eta_1, ..., \eta_K; \phi_1, ..., \phi_K)$ in Model LOG EV. Note that $\underline{\theta} = (\theta_1, ..., \theta_p)$ here denotes a generic parameter; it bears no direct relation to the i^{th} crew effect in our LOG EV model, (25). Then our procedure is this:

- (a) Estimate $\underline{\theta}$ from data; the result is $\underline{\hat{\theta}}(0)$, the point estimate of the parameters.
- (b) Provisionally adopt $\underline{\hat{\theta}}(0)$ as the true value in the parametric model, in the present case (1) or (25).
- (c) Simulate B independent data sets (bootstrap samples) from the model evaluated at $\hat{\underline{\theta}}(0)$: $\{Y_{ik}(b), i = 1, ..., I, k = 1, 2, ..., K; b = 1, 2, ..., B\}$.
- (d) Compute estimates of $\underline{\theta}$ for each sample, obtaining the bootstrap estimates $\{\underline{\hat{\theta}}(b), b = 1, 2, \dots, B\} = \{\underline{\hat{\theta}}(B)\}$, the bootstrap distribution of $\underline{\hat{\theta}}$.
- (e) Present relevant statistical summaries of marginal and joint distributions of $\{\underline{\hat{\theta}}(B)\}$: e.g. use as standard error of $\underline{\hat{\theta}}(0)$ components the corresponding standard deviations of the bootstrap estimate; use as confidence limits upper and lower percent points of the bootstrap sampling distributions, suitably adjusted. We present numerical illustrations in the next section.
- (f) The same procedure can evaluate standard errors of, and confidence limits for predictions from data: in the present case prediction of the probability that a response time exceeds any given value is evaluated in terms of the model evaluated repeatedly at bootstrap parameter estimate values; see Dalal *et al* (1988) for an example. See Section 9 for an example in the present context.

Bootstrapping methods suggest themselves for comparing the adequacies of different models for fitting and predicting from specific data sets. Specifically, bootstrapping may assist in choosing between two, or more, candidate models. In the present setting one may wish to predict the probability of non-success, i.e., of response time exceeding some time window of duration $t, \overline{P}(t; \underline{\theta})$. Models A and B (e.g. our LOG N and LOG EV options) are estimated obtaining $\hat{\underline{\theta}}_A(0)$ and $\hat{\underline{\theta}}_B(0)$. Then generate bootstrap samples for A and B using $\hat{\underline{\theta}}_A(0)$ and $\hat{\underline{\theta}}_B(0)$ respectively, resampling to estimate the mean-squared error of prediction when Model *i* is used to predict, given that the data comes from Model *j*; here $\{(i,j)\} = \{A, A; A, B; B, B; B, A\}$. Prefer the model whose use minimizes the maximum estimated mean-squared error of prediction. An alternative strategy is to prefer prediction from the most conservative model: the one predicting the greatest risk; see Section 9 and Draper, Hodges, *et al* (1987).

Another option for residual examination is to compute estimates of the expected log response times associated with each Task/Crew combination. Since crew effects are random, we estimate them in specific cases by their posterior means.

For the LOG N model, examination of (10) reveals that the posterior density of $\underline{\omega}_i$ is $N\left[\left(\bar{\omega}_i/\tau^2\right)/\left(1/\tau^2+1/\sigma_{\omega}^2\right), 1/\left(1/\tau^2+1/\sigma_{w}^2\right)\right]$. We substitute in the mle's for the various parameters to estimate in a particular case:

$$\hat{\omega}_{i} = \left(\bar{\omega}_{i}/\left(\tau\right)^{2}\right) / \left(1/\tau^{2} + 1/\sigma_{\omega}^{2}\right)$$

and then from (1), (8), (15), (16)

$$\hat{y}_{ik} = (\mu + \nu_{.}) + (\nu_{k} - \nu_{.}) + \hat{\omega}_{i} = \bar{y}_{..} + (y_{.k} - \bar{y}_{..}) + \left[(y_{i.} - \bar{y}_{..}) / (\hat{\tau})^{2} \right] / \left[1 / (\hat{\tau}^{2}) + 1 / \hat{\sigma}_{\omega}^{2} \right]$$
(45)

where all averages are suitably weighted. Note that the above formula for the mean acts, in effect as if a preliminary hypothesis test for homogeneity of crews is being applied: if σ_{ω}^2 is very small, giving evidence that all crews are the same, then the estimate $\hat{y}_{ik} \simeq y_{.k}$, the (weighted) task mean for each crew. On the other hand if $\hat{\sigma}_{\omega}^2$ is very large then $\hat{y}_{ik} \simeq y_{.k} + (y_{i.} - \tilde{y}_{..})$, the task mean modified by the estimated effect for crew i. The effectiveness of such a smooth transition when pooling data was noted by Mosteller (1947).

đ

For the LOG EV model take the expectation of (27) with respect to the (estimated) posterior density of θ_i , which is $\text{Gamma}(c_i + 1/\beta, K + 1/\beta)$ from (33) and (34). Using the first two terms of the asymptotic expansion we find

$$\hat{y}_{ik} = \hat{E}[y_{ik}] = \hat{\eta}_k - 0.5772\hat{\xi}_k - \hat{\xi}_k \left[\ln\left(K + 1/\hat{\beta}\right) - \ln\left(\hat{c}_i + 1/\hat{\beta}\right) - 0.5/\left(K + 1/\hat{\beta}\right) \right] (46)$$

7. EXAMPLE DATA ANALYSES

The previous models have been used to analyze response time data from simulator experiments involving operators performing certain safety-related tasks. In Tables 1 and 2 appear actual data from two such: System L and System D. It is noted that certain task-crew combinations are missing, some because of simulator failure. Two procedures were adopted for dealing with these cases: (1) values were imputed by an EM-like process; see Little and Rubin (1987); alternatively, (2) a likelihood approach was taken that simply omits such values from the analysis by setting to unity the likelihood contribution associated with a cell having a missing response. Both approaches can be useful; the former leans more heavily on model correctness. The analyses reported here emphasize the use of a simple imputation procedure; the incomplete data results are also reported in the summary tables.

In addition to "true" missing values there are observations, here marked with asterisks, that were judged to result from operators following non-standard response strategies. It was judged to be useful to analyze the data both with, and without, including such values; when omitted, those nonentries in the data table were treated as missing values, entries imputed as above or treated as missing values, and analyses made using LOG N and LOG EV models.

Results of fitting, along with bootstrapped standard errors, appear in Tables 3 and 4 for System L, and Tables 5 and 6 for System D. Both tables exhibit main effects ($\mu + \nu_k, \eta_k$) and scale parameters (σ_k and ξ_k) for LOG N/EV models computed under A: missing values, and non-standard strategy values, both treated as literally missing, using methods of the Appendix, and alternatively with entries imputed, and B: only the "true" missing values treated as missing. The imputation process used was iteration based on standard two-way ANOVA with fixed task and crew effects. This is a convenient crude approximation to a proper EM algorithmic approach, Little and Rubin (1987). In addition, random crew effect variance parameters, σ_{ω}^2 and β respectively for the two models, were estimated. The resampling-refitting parametric bootstrap supplied the standard errors; see Efron (1979) and Dalal, Fowlkes, and Hoadley (1988).

It is noted that for System L the fixed effects $(\mu + \nu_k, \hat{\eta}_k)$ under A and B agree closely, with the exception of Tasks 2 and 9. Data for Task 9, in Table 1, exhibits 8 out of 18 missing values, and a further 4 non-standard strategy values, all of which are far in excess of other times for that task. Data for Task 2 also exhibit substantially many missing values **and** non-standard times, the latter having resulted from operators following non-standard procedures and hence yielding times more lengthy than the other, acceptable, values. The noticeable differences are, however, still within 2 bootstrap standard errors. The corresponding scale effects (e.g., log task time standard deviations) for Tasks 2 and 9 behave in corresponding fashion, increasing by factors of 2 to 3 if the non-standard times are included.

Similar behavior occurs for System D, although here the exceptions occur for Tasks 4 and 8. There are fewer missing and non-standard times reported for System D than for System L. Relatively large changes occur in the standard errors, as well as in main effect and scale parameter estimates, when several missing or non-standard times are encountered, and these are treated differently in the analysis.

In order to check for the effect of imputation, and also for that of apparent correlations between certain task times the analyses were re-run for System L omitting Tasks 2, 4, and 9. The results appear in Tables 7 and 8. Although specific numerical values are changed, the general pattern remains quite similar: the new numbers are quite often well within a standard error of the estimates that utilize data from all tasks.

8. MODEL CRITICISM VIA RESIDUAL EXAMINATION

In order to examine the overall fit of the models to data it is useful to conduct some form of residual analysis. We have chosen first to judge the overall degree of fit by computing and summarizing *uniform residuals* as described by Brillinger and Preisler (1983). In general for this procedure one estimates model parameters $\underline{\theta}$, from data and then examines the estimated probability integral transformation of the data, utilizing the fitted model: if the model is correct then the latter should closely resemble the uniform distribution. In Figures 1 through 8 we display plots and summary statistics for such estimated probability integral transforms of the present data set. We also exhibit the result of bootstrapping once: each model was allowed to create one set of bootstrap sample data utilizing the fitted parameter values; these values were then treated like raw data, and were then probability integral transformed and the results plotted and summarized.

The results have different implications for the appropriateness of the models for the two data sets. The left uniform plot of Figure 1 shows decided nonuniformity of residuals when the raw data is fitted by LOG N using the methods of the Appendix; however, if a bootstrap sample is generated using the fitted model parameters the results are far more uniform. This strongly suggests that the basic model is inappropriate. A similar implication is obtained by examining Figure 3, the residuals of which are associated with LOG EV. Figures 2 and 4 describe the residuals when imputation of missing and/or non-standard values is conducted. Notice that uniformity of residuals of the fit of the raw (plus imputed) data is greatly enhanced. This is not surprising since imputation is based on presumption of model correctness, and the missing and non-standard values are imputed using the presumed model. The same general behavior is observed when data from System D are fitted by the two models in various ways. Here, however, the departure of the residuals from uniformity, as shown on the left-most residual plots of Figures 5 and 7, seems less pronounced than is the case for System L. Again, imputation improves the uniformity of the residuals and the apparent fit. We conclude that the log-additive models are more likely to be trustworthy for system D than for System L.

9. MODIFICATION OF THE MODELS FOR INITIAL DELAY

In the nuclear plant simulator exercises, and doubtless for other applications as well, certain task response times may begin after a cue different from, and later than, the actual initiating event. That is, the operational cue that triggers response may occur some time after a possible original cueing event (e.g., the first evidence of nuclear plant abnormality). Unfortunately, the time of the operational cue is not usually recorded in simulator practice, and so response time data, which may use initiating event time or some other well-specified event time for reference, tends to exhibit an initial delay. Such delays may be inferred from plant and initiating event information, or by examining the actual response time data. Note that ignoring such delays if they are appreciable, i.e., fitting a 2-parameter LOG N or LOG-EV model when a 3-parameter specification is more appropriate can importantly change the estimated parameter values, particularly the LOG N σ_k or LOG EV ξ_k , the measures of within-task variability. Specifically, if the delay is ignored and our current models employed uncritically when a delay $\gamma_k > 0$ is required then the estimated values, $\hat{\sigma}_k$ and $\hat{\xi}_k$, will be biased downwards (under-estimated), sometimes quite significantly.

To illustrate the effect of a rough accounting for delay examine the Task 10 data for system L in Table 1. The minimum value is 1402 and the maximum is 3450, so there is an appreciable delay associated with beginning the task as compared to the variability of the response times. If the data is taken at face value and our LOG N and LOG EV models fitted, then Table 3 exhibits $\xi_{10} = 0.28$ considerably smaller than that for other tasks. If, however, a rough adjustment is made for delay by subtracting 1000 from each Task 10 response time data value then the simple standard deviation estimate for logged (times-1000) for Task 10 becomes 0.59, far more similar to other task response time standard deviations.

At present the LOG N and LOG EV programs fit 2-parameter models, so accounting for delay, γ_k , must be done off-line. A formal approach to the estimation problem for the Weibull model is given by Smith and Naylor (1987); that paper also references other relevant articles.

10. RISK CALCULATIONS

An important application of the LOG N and LOG EV models is to risk analysis: it is desired to estimate the probability that a task's response time occurs within a particular time window, for in that case (some aspect of) the threat has been averted. We will refer to the probability that response time exceeds the time window as the human interaction risk associated with the task.

It is easy to make point estimates of the required probabilities using both existing models: one simply replaces the model parameters associated with the task of interest by their maximum likelihood estimates. A natural way in which to handle crew effect is simply to remove the crew condition ω or θ by integrating it out with respect to the appropriate Normal/Gauss or Gamma estimated prior. In order to assess the effect of a particular crew on the risk it is necessary to calculate the posterior density for that crew and then integrate out on ω or θ with respect to that posterior. It may well be of interest to compare the estimated risk as it depends upon which crew is in place when an initiating event occurs in order to assess the effect of individual crews directly on risk. This is not done here.

11. RISK UNCERTAINTY

In order to assess the the uncertainty inherent in the risk estimation one may once again bootstrap. The procedure is this:

(a) Estimate θ from data to obtain $\hat{\theta}_0$:

LOG N :
$$\hat{\theta}_0 = (\hat{\sigma}_{\omega}^2, \hat{\mu}, \hat{\nu}, \hat{\sigma}^2)$$

LOG EV : $\hat{\theta}_0 = (\hat{\beta}, \hat{\eta}, \hat{\xi}^2)$

- (b) Provisionally adopt $\hat{\theta}_0$ as the true value in the parametric model.
- (c) Simulate B independent data sets from the model with parameter $\hat{\theta}_0$: $\{y_{ik}(b), \text{ with } b = 1, 2, \dots, B\}.$
- (d) Estimate θ from each sample of (c). Obtain $\{\hat{\theta}(b), b = 1, 2, \dots, B\};$
- (e) Compute $P\{T_k > w_k | \theta(b)\} = P\{\ln T_k > \ln w_k | \theta(b)\};$ = $P\{Y_k > w'_k | \theta(b)\} \equiv r_k(b)$, where

$$w'_k = \ln w_k.$$

The risk associated with Task k estimated from bootstrap sample b(b = 1, 2, ..., B) for each model, that is, calculate the probability that the time window w_k is exceeded using the b^{th} set of parameters estimated. For our two models and b = 1, 2, ..., B, and also b = 0, the original estimate, thus becomes, respectively, for the two models,

$$R_{k}(b; \text{LOG N}) = 1 - \Phi\left(\frac{w'_{k} - (\hat{\mu}(b) + \hat{\nu}_{k}(b))}{\sqrt{\hat{\sigma}_{\omega}^{2}(b) + \hat{\sigma}_{k}^{2}(b)}}\right),$$
(47)

$$R_k(b; \text{LOG EV}) = \left(1 + \hat{\beta}(b) \exp\left(w'_k - \hat{\eta}_k(b)\right) / \hat{\xi}(b)\right)^{-1/\beta(b)}$$
(48)

The following table exhibits risk calculation for prescribed windows; the lengths chosen are for illustration only. Calculations have been made both *without* non-standard strategy values (A) and *including* non-standard strategy values (B); any missing or left-out values were imputed as before.

Examination of the point estimates in Table shows that there is considerable similarity in the orders of magnitude of the risks given by LOG N and LOG EV. However, LOG EV values are consistently below those for LOG N, as are the corresponding confidence limits. It is, thus, more conservative to adopt LOG N model-based risk estimates than to use those based on LOG EV, or equivalently the Weibull model. The exception, Task 9, is probably traceable to the many missing values exhibited.

(f) Present statistical summaries of marginal and joint distribution of $R_k(b)$: e.g., use as standard error for the original risk estimate, $R_k(0)$, the standard deviation

$$S_{R_k} = \sqrt{\frac{1}{B-1} \sum_{k=1}^{K} \left(R_k(b) - \overline{R}_k \right)^2}$$
(49)

Note that the overall risk associated with a particular initiating event depends upon the risks associated with all tasks (human interactions) associated with response to the event. These risks may well be dependent probabilities, at minimum because all tasks presumably confront the same crew. To handle the dependency induced by a common crew one can assume conditional independence, multiply risks conditional on crew to obtain the risks associated with joint events, and then integrate out with respect to the crew's posterior density. The calculation may be performed explicitly for the LOG EV model since a closed-form elementary function expression for the extreme-value survivor function exists; no such simple calculation can be carried out for the LOG N, but numerical procedures are always available. Examination of the results suggests considerable similarity between the risks calculated using the LOG N and LOG EV models. It is, however, noticeable that for all tasks except Tasks 3 and 9, LOG N predicts a slightly greater risk than does LOG EV, and generally with slightly larger standard error. Of course in most cases shown the risks associated with the window values in our example are too high to be realistic; the windows were chosen for illustration only.

The above calculations have been carried out using parameter values obtained under imputation. Thus the apparent similarity of risks across models is probably overstated, and, in view of the suspicion cast on the fits to system L data (see Section 8) we should treat the System L risks with caution.

12. SUMMARY AND CONCLUSIONS

In this article we have suggested and shown how to fit, by maximum likelihood, two models for operator response times. The fits of the models to two sets of (actual) data are displayed and compared. Uncertainties are assessed by parametric bootstrapping. Complications involving missing values and consequent lack of balance are dealt with by direct likelihood computation as well as by a simple form of imputation. Finally, the fitted models are applied to estimate the risk of exceeding (hypothetical) time windows; associated uncertainties, i.e., standard errors and confidence limits, are obtained by bootstrapping.

We view this work as a pilot or feasibility study intended to illustrate and explore possibly useful approaches and methodology to an important area. Outstanding problems remain: the models put forward were chosen for their abilities to account for some aspects of the real situation and for relative tractability, but many other forms could be conjured up, fitted, and applied to infer risk, as defined here. It is somewhat interesting to find that risks estimated from the same data using the different models agree rather closely; it is not unlikely that the agreement will suffer if the windows are increased so as to achieve much smaller, and presumably more realistic risk values.

The bootstrap standard errors and confidence limits warn that although the present models tend to agree in their risk assessments the uncertainty is still rather large, even if wrong-model or *structural uncertainty* is ignored; see Draper, Hodges *et al* (1987) for discussion. In order to reduce the uncertainty of estimation, e.g. to reduce standard error size, it is often proposed to aggregate or pool data, either from similar tasks in the same environment (plant), or for the same task across "similar" environments. Both procedures are worthy of investigation, but will be credible only if suitable adjustments are made to reduce bias. Adjustments can be carried out by using models resembling the types suggested here, possibly enhanced to include regression terms "explaining" responses in terms of measured and qualitative crew and plant characteristics ("performance shaping factors" is the jargon in certain risk assessment circles). To date, formal adjustment attempts by regression have been inconclusive but are a form of insurance that should be included, and validated to the greatest extent possible, if aggregation or pooling is contemplated, particularly across plants. Inter-plant variability may be appreciable because of variations in management philosophy and style.

In general, it seems advisable to utilize bootstrapping as extensively as possible to build an appreciation for the variabilities and uncertainties involved when using models. Bootstrapping that uses direct re-sampling as originally discussed, Efron (1979), seems difficult or impossible for situations such as are described here unless vastly more data becomes available and better, more scientifically based, models and true replications can be employed. Consequently, use of parametric bootstrapping becomes necessary. However, parametric bootstrapping that consumes data from more realistic, and elaborate, models and their fits to simpler structures can be useful and informative. But such exercises cannot directly substitute for data obtained under truly operational circumstances, which even the best *simulator* data can not aspire to be.

13. ACKNOWLEDGEMENTS

The support, encouragement and stimulation of David Worledge of EPRI was essential and is much appreciated, as is that of A. J. Spurgin and P. Moieni of APG. We look forward to applying the models and ideas to military operator problems; S. Parry of the Dept. of Operations Research, NPGS, and Capt. J. Hoffman of TRAC Monterey have been encouraging this effort.

<u>í</u>,

APPENDIX A. MAXIMUM LIKELIHOOD ESTIMATION FOR LOG N MODEL, WITH MISSING VALUES

Let $d_{ik} = 1$ if the observation at (i,k) [i.e., for crew i, task k] is available; otherwise $d_{ik} = 0$. Then the component of likelihood associated with (Crew) i is

$$f_{\underline{y_i}}\left(\underline{y_i},\mu,\underline{\nu},\omega_i\right) = \prod_{k=1}^{K} \left\{ \frac{e^{-\frac{1}{2}(y_{ik}-\mu-\nu_k-\omega_i)^2/\sigma_k^2}}{\sqrt{2\pi}\sigma_k} \right\}^{d_i}$$
$$= \frac{e^{-\frac{1}{2}\sum_{k=1}^{K} d_{ik}(y_{ik}-\mu-\nu_k-\omega_i)^2/\sigma_k^2}}{\left(\sqrt{2\pi}\right)^{\sum_k d_{ik}} \prod_{k=1}^{K} \sigma_k^{d_{ik}}}}$$

Now write

$$\sum_{k=1}^{K} d_{ik} \left(y_{ik} - \mu - \nu_k - \omega \right)^2 \cdot \frac{1}{\sigma_k^2} = \frac{(\bar{\omega}_i - \omega)^2}{\tau_i^2} + K_i.$$

After differentiation $re \ \omega$,

$$\sum_{k=1}^{K} \frac{d_{ik}}{\sigma_k^2} \left(y_{ik} - \mu - \nu_k - \omega \right) = \frac{\left(\bar{\omega}_i - \omega \right)}{\tau_i^2}$$

which implies, identifying terms of order 1 and ω , and writing

$$\begin{cases} \sum_{k=1}^{K} d_{ik} \left(y_{ik} - \mu - \nu_{k} \right) p_{k} = \bar{\omega}_{i} / \tau_{i}^{2} \\ \sum_{k=1}^{K} d_{ik} p_{k} = 1 / \tau_{i}^{2} \end{cases}$$

Hence $\tau_i^2 = 1 / \sum_{k=1}^K d_{ik} p_k$ $\tilde{\omega}_i = \tau_i^2 \sum_{k=1}^K d_{ik} (y_{ik} - \mu - \nu_k) p_k = y_i - \mu - \tau_i^2 \sum_{k=1}^K d_{ik} \nu_k p_k$, where $y_i = \tau_i^2 \sum_{k=1}^K d_{ik} y_{ik} p_k$ and

$$K_{i} = \sum_{k=1}^{K} d_{ik} \left(y_{ik} - \mu - \nu_{k} - \omega_{i} \right)^{2} p_{k}.$$

Thus re-write the likelihood as

$$\int \underline{y}_{i} \left(\underline{y}_{i}; \mu, \underline{\nu}, \underline{\sigma}, \sigma_{\omega}^{2} \right) = e^{-\frac{1}{2}K_{i}} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}\left\{ \left(\overline{\omega}_{i} - \omega \right)^{2} / \tau_{i}^{2} \right\}} e^{-\frac{1}{2}\omega^{2} / \sigma_{\omega}^{2}} dw}{\left(\sqrt{2\pi} \right)^{\Sigma d_{ik}} \sigma_{k}^{d_{ik}} \sqrt{2\pi} \tau_{i}}}$$

$$\propto \frac{e^{-\frac{1}{2}K_{i}} e^{-\frac{1}{2}\overline{\omega}_{i}^{2} / \left(\tau_{i}^{2} + \sigma_{\omega}^{2} \right) \sqrt{\tau_{i}^{2}}}}{\left\{ \prod_{k=1}^{K} \sigma_{k}^{d_{ik}} \right\} \sqrt{\tau_{i}^{2} + \sigma_{\omega}^{2}}}}$$

Hence the likelihood assumes the form

$$L = \prod_{i=1}^{I} \frac{e^{-\frac{1}{2}K_{i}} e^{-\frac{1}{2}\tilde{\omega}_{i}^{2}/(\tau_{i}^{2} + \sigma_{\omega}^{2})}}{\prod_{k=1}^{K} \sigma_{k}^{d_{ik}} \sqrt{\tau_{i}^{2} + \sigma_{\omega}^{2}}} \sqrt{\tau_{i}^{2}}$$

Taking logarithms, we obtain

$$l = 2 \ln L = -\sum_{i=1}^{I} K_i - \sum_{i=1}^{I} \frac{\bar{\omega}_i^2}{\tau_i^2 + \sigma_\omega^2} + \sum_{i=1}^{I} \ln \tau_i^2 - \sum_{k=1}^{K} n_k \ln \sigma_k^2 - \sum_{i=1}^{I} \ln \left(\tau_i^2 + \sigma_\omega^2\right),$$
$$= -\sum_{i=1}^{I} K_i - \sum_{i=1}^{I} \frac{\bar{\omega}_i^2}{\tau_i^2 + \sigma_\omega^2} + \sum_{i=1}^{I} \ln \tau_i^2 + \sum_{k=1}^{K} n_k \ln p_k - \sum_{i=1}^{I} \ln \left(\tau_i^2 + \sigma_\omega^2\right)$$

where

$$n_k = \sum_{i=1}^{I} d_{ik}$$

Differentiating first $re \ \mu$, we obtain

$$\frac{\partial l}{\partial \mu} = -\sum_{i=1}^{I} \left(\frac{\partial K_i}{\partial \mu} + \frac{2\bar{\omega}_i}{\tau_i^2 + \sigma_\omega^2} \frac{\partial \bar{\omega}_i}{\partial \mu} \right)$$
$$\frac{\partial K_i}{\partial \mu} = 0, \frac{\partial \bar{\omega}_i}{\partial \mu} = -1$$

Hence

$$\frac{\partial l}{\partial \mu} = -\sum_{i=1}^{I} \frac{2\bar{\omega}_i (-1)}{\tau_i^2 + \sigma_{\omega}^2} = 0$$
$$\Rightarrow \sum_{i=1}^{I} \frac{\bar{\omega}_i}{(\tau_i^2 + \sigma_{\omega}^2)} = 0$$

$$\frac{\left(y_{i.}-\mu-\tau_{i}^{2}\sum_{k=1}^{K}d_{ik}\nu_{k}p_{k}\right)}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)} = 0$$

$$\hat{\mu}\sum_{i=1}^{I}\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{-1} = \sum_{i=1}^{I}\frac{\left(y_{i.}-\tau_{i}^{2}\sum_{k}d_{ik}p_{k}\nu_{k}\right)}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}$$

$$\Rightarrow \hat{\mu} = \sum_{i}\frac{\left(y_{i.}-\tau_{i}^{2}\sum_{k}d_{ik}\nu_{k}p_{k}\right)}{\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)}/\sum_{i}\left(\tau_{i}^{2}+\sigma_{\omega}^{2}\right)^{-1}$$

Next, differentiate $re \nu_l$:

$$\frac{\partial l}{\partial \nu_l} = -\left\{\sum_i \frac{\partial K_i}{\partial \nu_l} + \sum_i \frac{2\bar{\omega}_i}{\tau_i^2 + \sigma_\omega^2} \cdot \frac{\partial \bar{\omega}_i}{\partial \nu_l}\right\} = 0$$
$$\frac{\partial K_i}{\partial \nu_l} = \frac{\partial}{\partial \nu_l} \left\{\sum_k d_{ik} \left(y_{ik} - \mu - \nu_k - \bar{\omega}_i\right)^2 p_k\right\}$$
$$= 2\sum_k d_{ik} \left(y_{ik} - \mu - \nu_k - \bar{\omega}_i\right) p_k \left(-\delta_{lk} - \frac{\partial \bar{\omega}_i}{\partial \nu_l}\right)$$
$$\frac{\partial \bar{\omega}_i}{\partial \nu_l} = -\tau_i^2 d_{il} p_l$$

Hence

$$\frac{\partial l}{\partial \nu_l} = -\sum_{i=1}^{l} \left\{ 2\sum_k d_{ik} \left(y_{ik} - \mu - \nu_k - \bar{\omega}_i \right) p_k \left(-\delta_{lk} + \tau_i^2 d_{il} p_l \right) + 2\frac{\bar{\omega}_i}{\tau_i^2 + \sigma_\omega^2} \left[-\tau_i^2 d_{il} p_l \right] \right\} = 0$$

Thus,

$$-\sum_{i=1}^{l} d_{il} \left\{ \tau_i^2 d_{il} p_l \sum_k d_{ik} \left(y_{ik} - \mu - \nu_k - \bar{\omega}_i \right) p_k - d_{ik} \left(y_{il} - \mu - \nu_l - \bar{\omega}_i \right) p_l - \frac{\bar{\omega}_i \tau_i^2}{\tau_i^2 + \sigma_{\omega}^2} d_{il} p_l \right\} = 0$$

Further simplification results in

$$-\sum_{i} d_{il} \left\{ \tau_{i}^{2} \sum_{k} d_{ik} \left(y_{ik} - \mu - \nu_{k} - \bar{\omega}_{i} \right) p_{k} - \left(y_{il} - \mu - \nu_{l} - \bar{\omega}_{i} \right) - \frac{\bar{\omega}_{i} \tau_{i}^{2}}{\tau_{i}^{2} + \sigma_{\omega}^{2}} \right\} = 0$$

Hence

$$\nu_{l} \sum_{l} d_{il} = \sum_{i=1}^{l} d_{il} \left[-\tau_{i}^{2} \sum_{k} d_{ik} \left(y_{ik} - \mu - \nu_{k} - \bar{\omega}_{i} \right) p_{k} + \left(y_{il} - \mu - \bar{\omega}_{i} \right) + \frac{\tau_{i}^{2} \bar{\omega}_{i}}{(\tau_{i}^{2} + \sigma_{\omega}^{2})} \right]$$

$$\Rightarrow \nu_{l} = \frac{1}{n_{l}} \sum_{i=1}^{l} d_{il} \left\{ -\tau_{i}^{2} \sum_{k} d_{ik} \left(y_{ik} - \mu - \nu_{k} - \bar{\omega}_{i} \right) p_{k} + \left(y_{il} - \mu - \bar{\omega}_{i} \right) + \frac{\tau_{i}^{2} \bar{\omega}_{i}}{\left(\tau_{i}^{2} + \sigma_{\omega}^{2} \right)} \right\}.$$

We now differentiate $re p_l$, noting

$$\begin{aligned} \frac{\partial \tau_i^2}{\partial p_l} &= -\frac{1}{\left(\sum_k d_{ik} p_k\right)^2} d_{il} = -\tau_i^4 d_{il} \\ \frac{\partial \bar{\omega}_i}{\partial p_l} &= \tau_i^2 d_{il} \left(y_{il} - \mu - \nu_l\right) + \left\{\sum_k d_{ik} \left(y_{ik} - \mu - \nu_k\right) p_k \left(-\tau_i^4 d_{il}\right)\right\} \\ &= \tau_i^2 d_{il} \left\{y_{il} - \mu - \nu_l - \tau_i^2 \sum_k d_{ik} \left(y_{ik} - \mu - \nu_k\right) p_k\right\} \\ &= \tau_i^2 d_{il} \left(y_{il} - \mu - \nu_l - \bar{\omega}_i\right) \end{aligned}$$

$$\frac{\partial K_i}{\partial p_l} = d_{il} \left(y_{il} - \mu - \nu_l - \bar{\omega}_i \right)^2 + 2 \sum_k d_{ik} \left(y_{ik} - \mu - \nu_k - \bar{\omega}_i \right) p_k \left\{ -\tau_i^2 d_{il} \left(y_{il} - \mu - \nu_l - \bar{\omega}_i \right) \right\}$$

$$= d_{il} \left(y_{ik} - \mu - \nu_k - \bar{\omega}_i \right) \left\{ \left(y_{il} - \mu - \nu_l - \bar{\omega}_i \right) - 2\tau_i^2 \sum_k d_{ik} \left(y_{ik} - \mu - \nu_k - \bar{\omega}_i \right) p_k \right\}$$

Noting also that

$$\tau_i^2 \sum_k d_{ik} \left(y_{ik} - \mu - \nu_k - \bar{\omega}_i \right) p_k = \tau_i^2 \sum_k d_{ik} \left(y_{ik} - \mu - \nu_k \right) p_k - \bar{\omega}_i \tau_i^2 \sum_k d_{ik} p_k = \bar{\omega}_i - \bar{\omega}_i = 0$$

4

it follows that

$$\frac{\partial K_i}{\partial p_l} = d_{il} \left(y_{il} - \mu - \nu_l - \bar{\omega}_i \right)^2.$$

$$\frac{\partial l}{\partial p_l} = \sum_{i=1}^{I} d_{il} \left(y_{il} - \mu - \nu_l - \bar{\omega}_i \right)^2 - \frac{2\bar{\omega}_i \tau_i^2}{\left(\tau_i^2 + \sigma_\omega^2\right)} \left(y_{il} - \mu - \nu_l - \bar{\omega}_i \right) \\ - \frac{\left(-1\right)\bar{\omega}_i^2 \left(1 - \tau_i^2 d_{il}\right)}{\left(\tau_i^2 + \sigma_\omega^2\right)^2} + \frac{1}{\tau_i^2} \left(-\tau_i^4 d_{il}\right) + \frac{n_l}{p_l} - \frac{1\left(-\tau_i^4 d_{il}\right)}{\left(\tau_i^2 + \sigma_\omega^2\right)}$$

Hence,

$$\frac{\partial l}{\partial p_l} = 0 \Rightarrow$$

$$p_{l} = n_{l} / \left\{ \sum_{i=1}^{I} d_{il} \left[\left(y_{il} - \mu - \nu_{l} - \bar{\omega}_{i} \right) \left(y_{il} - \mu - \nu_{l} - \bar{\omega}_{i} + \frac{2\bar{\omega}_{i}\tau_{i}^{2}}{\tau_{i}^{2} + \sigma_{\omega}^{2}} \right) \right] + \frac{\bar{\omega}_{i}^{2}\tau_{i}^{4}}{\left(\tau_{i}^{2} + \sigma_{\omega}^{2}\right)^{2}} + \tau_{i}^{2} - \frac{\tau_{i}^{4}}{\tau_{i}^{2} + \sigma_{\omega}^{2}} + \tau_{i}^{2} + \sigma_{\omega}^{2} + \sigma_{\omega}^{$$

Finally, differentiating $re \sigma_{\omega}^2$, we find

$$\frac{\partial l}{\partial \sigma_{\omega}^2} = \sum_{i=1}^{I} \frac{\bar{\omega}_i^2}{\left(\tau_i^2 + \sigma_{\omega}^2\right)^2} - \sum_{i=1}^{I} \frac{1}{\left(\tau_i^2 + \sigma_{\omega}^2\right)} = 0$$

which implies

$$\sigma_{\omega}^{2} = \sum_{i=1}^{I} \frac{\bar{\omega}_{i}^{2} - \tau_{i}^{2}}{\left(\tau_{i}^{2} + \sigma_{\omega}^{2}\right)^{2}} / \sum_{i=1}^{I} \frac{1}{\left(\tau_{i}^{2} + \sigma_{\omega}^{2}\right)}$$

The following iterative procedure was employed:

- (a) Use imputed values to obtain $\hat{\mu}(0)$, $\hat{\sigma}_{\omega}^{2}(0)$, $\hat{\gamma}_{k}(0)$, $\hat{p}_{k}(0)$ [k = 1, ..., K]
- (b) Solve for $\hat{\mu}(1)$ using (A-1) Update $\bar{\omega}_i$
- (c) Solve for $\hat{\nu}_l(1)$ using (A-2) Update $\bar{\omega}_i$
- (d) Solve for \hat{p}_l using (A-3) Update $\hat{\omega}_i, \tau_i^2$
- (e) Solve for σ_{ω}^2 using (A-4)

Repeat (b) through (e) until convergence.

REFERENCES

Anderson, T. W. (1984) An Introduction to Multivariate Statistical Analysis (Second Edition). New York: John Wiley.

Brillinger, D. R., Preisler, H. K. (1983) "Maximum likelihood estimation in a latent variable problem." *Studies in Econometrics, Time Series and Multivariate Statistics.* New York: Academic Press.

Crowder, M. (1985) "A distributional model for repeated failure time measurements." *Journal of the Royal Statistical Society, Ser. B*, 47, pp. 447-452.

Crowder, M. (1989). "A multivariate distribution with Weibull connections." Journal of the Royal Statistical Society, Ser. B, 51, No. 1, pp. 93-107.

Dalal, S. R., Fowlkes, E. B. and Hoadley, B. (1990) "Risk Analysis of the Space Shuttle: Pre-Challenger prediction of failure." *Journal of the American Statistical Association*, 84, No. 408, pp. 945-967.

Denby, L., and Mallows, C. (1988) "Robust analysis of mixed models." AT&T Statistical Research Reports, No. 65. AT&T Bell Laboratories, Murray Hill, NJ.

Draper, D., Hodges, J. S., Leamer, E., Morris, C. N., Rubin, D. B. (1987).A Research Agenda for Assessment and Propagation of Model Uncertainty.Rand Note N-2683-RC. The Rand Corporation, Santa Monica, CA.

Efron, B. (1979) "Bootstrap methods: another look at the jackknife." *Annals of Statistics*, 7, pp. 1-26.

Gaver, D. P., and O'Muircheartaigh, I. G. (1987). "Robust empirical Bayes analyses of event rates." *Technometrics*, 29, No. 1, pp. 1-15.

Gaver, D. P., Jacobs, P. A., and O'Muircheartaigh, I. G. (1990) "Regression analysis of hierarchical Poisson-like event rate data: superpopulation model effect on predictions." (to appear in *Communications on Statistics*).

Hougaard, P. (1986) "Survival models for heterogeneous populations derived from stable distributions." *Biometrika*, 73, pp. 387-396.

Hougaard, P. (1986) "A class of multivariate failure time distributions." Biometrika, 73, pp. 671-678.

Kimber, A. C., and Crowder, M. J. (1988) A Repeated Measurements Model with Applications in Psychology, University of Surrey Technical Report on Statistics, No. 65.

Little, R. J. A., and Rubin, D. B (1987) Statistical Analysis with Missing Data. New York: John Wiley and Sons.

Mosteller, F. W. (1947) "On pooling data." Journal of the American Statistical Association, 43, No. 242, pp. 231-242.

Scheffé, H. (1959) The Analysis of Variance. New York: John Wiley and Sons.

Smith, R. L., and Naylor, J. C. (1987) "Statistics of the three-parameter Weibull distributions." Annals of Operations Research, 9, pp. 577-587.

Watson, A. S. and Smith, R. L. (1985) "An examination of statistical theories for fibrous materials in the light of experimental data." *Journal of Materials Science*, 20, pp. 3260-3270.

TABLE 1 SYSTEM L TASK-CREW TIMES

TASK/CREW	1	2	3	4	S	9	٢	8	6	10	11	12	13	14	15	16	17	18
1	87	76	92*	64	134*	6	29	14	59	85	20	7	61	37	48	ŝ	11	11
5	88	370*	93*	65	600	49	30	247*	09 ×	86	31	000	75	38	165*	-00	12	12
ŝ	164	34	51	162	109	70	000	25	46	48	67	28	151	34	26	000	20	25
4	600	600	453	261	406	600	600	371	91	876	668	320	000	310	678	000	00	600
5	196	57	00	125	218	260	00	92	65	149	51	110	60	80	62	00	84	14
9	20	16	21	19	21	3	~	12	19	22	20	20	6	6	15	000	00	11
7	000	ŝ	00	000	ŝ	160	171	54	87	75	76	65	68	126	87	00	186	121
8	142	730	314	930	509	324	00	1159	493	256	420	360	449	646	500	-02	000	ŝ
6	22	000	721*	2149*	000	1036*	62	10	101	000	000	000	208*	19	37	000	00	600
10	ŝ	1410	1676	000	000	2287	3450	2298	1402	2293	1565	2340	1522	500	665	00	00	1473
11	600	600	377	89	242	392	802	135	718	246	122	978	40	230	60	535	273	69
12	574	ŝ	2146	son	630	749	3144	1767	840	1004	1246	1055	1419	1888 2	578	2338	w	1046

Alternative strategies
 § Missing data (e.g., simulator error)

÷

	TIMES
TABLE 2.	TASK-CREW
	Q
	SYSTEM

10	24	193	295	ŝ	0	295	69	868*	446	1020
6	15	384	283	31*	912	300	71	211	936	1102
8	13	168	320	290	548	510	28	238	279	955
Г	10	346	303	519	1225	271	112	526*	358	690
9	14	248	401	ŝ	439	307	141	809*	848	1487
2	13	403	409	1329	855	276	121	250	416	1456
4	9	115	562	210	1628	209	171	262*	492	962
3	5	437	272	147	1040	293	33	41	229	817
2	80	263	457	143*	1226	276	18	312	475	1192
1	10	404	326	431	1799	304	131	200	277	420
TASK/CREW	1	2	3	4	5	9	7	00	6	10

Alternative strategies
 Missing data (e.g., simulator error)

MODEL: Log EV

3-3

	TASK EF	FECTS	TASK "ST	D. DEVS."		TASK	RISKS	90% CON INT	IFIDENCE ERVAL
TASK	η_k	STD. ER.	л к	STD. ER.	MOGNIM	RISK	STD. ER.	UPPER	LOWER
-10	3.16(3.54)	0.30(0.18)	0.63(0.58)	0.14(0.09)	80.	0.061(0.030)	0.019(0.031)	0.104(0.129)	0.036(0.036)
NM	5.04(5.79) 3.69(4.01)	0.29(0.17)	0.62(0.60)	0.14(0.10)	160.	0.039(0.045)	0.015(0.018)	0.066(0.071)	0.023(0.022)
r,	5.24(5.97)	0.57(0.13)	0.69(0.41)	0.27(0.07)	100.	0.701(0.966)	0.079(0.035)	0.831(1.007)	0.600(0.904)
S	4.24(4.62)	0.28(0.17)	0.55(0.49)	0.11(0.11)	200.	0.061(0.089)	0.020(0.032)	0.092(0.146)	0.037(0.046)
v,0	2.65(2.73)	0.11(0.10)	0.26(0.31)	0.05(0.05)	20.	0.133(0.184)	0.041(0.05/)	0.190(0.289)	(201.0)120.0
~	4.33(4.80)	0.32(0.11)	0.45(0.32)	0.14(0.06)	120.	0.189(0.440)	0.026(0.036)	1364.01252.0	(522.0)101.0
~~	5.85(6.18)	0.26(0.17)	0.52(0.47)	0.13(0.09)	1000.	0.052(0.070)	0.014(0.030)	0.0/9(0.128)	(< < 0 . 0 . 9 < 0 . 0 . 0
σ	2.19(3.40)	0.86(0.17)	0.83(0.49)	0.42(0.09)	1000.	0.000(0.000)	0.003(0.000)	0.006(0.000)	0.000(0.000)
1 D	7.22(7.58)	0.12(0.09)	0.31(0.28)	0.09(0.05)	2200.	0.102(0.299)	0.020(0.076)	0.129(0.423)	0.069(0.189)
	5.19(5.51)	0.34(0.24)	0.71(0 74)	0.16(0.13)	800.	0.049(0.063)	0.017(0.024)	0.030(0.106)	0.031(0.033)
5	7.06(7.24)	0.20(0.12)	0.40(0.40)	0.10(0.07)	1500.	0.175(0.242)	0.040(0.063)	0.244(0.335)	0.123(0.152)
	9		STD. ER.		90% C	ONFIDENCE INTERV	AL		
	0.58(0.	38) 0.	.15(0.05)		0.94(0	.43) 0.48(0.2	(2		

MODEL: Log N

TASK EFFE	CTS	TASK "ST	D. DEVS.		TASK	RISKS	90% CON INT	FIDENCE ERVAL
TASK H + Vk	STD. ER.	ak	STD. ER.	MDUNIM	RISK	STD. ER.	UPPER	LOWER
1 3.40(3.48) 0	.25(0.21)	0.86(0.72)	0.16(0.12)	80.	0.128(0.120)	0.074(0.064)	0.256(0.227)	0.027(0.023)
2 3.71(3.78) 0	.20(0.11)	0.67(0.43)	0.12(0.07)	600.	0.000(0.000)	0.002(0.000)	0.002(0.000)	
	(21.0)01.	(22.0.769.0 (74.0.767.0	0.13(0.08)	100.	0.986(0.993)	0.026(0.008)	1.000(1.000)	0.918(0.973)
	18(0.13)	0.68(0.50)	0.12(0.09)	200.	0.123(0.109)	0.068(0.052)	0.262(0.203)	0.022(0.029)
6 2.62(2.65) 0	13(0.13)	0.52(0.52)	0.09(0.08)	20.	0.243(0.277)	0.092(0.083)	0.381(0.387)	0.089(0.130)
7 4 59(4 72) 0	(11(0)12)	0.40(0.41)	0.08(0.07)	120.	0.312(0.448)	0.106(0.094)	0.473(0.610)	0.150(0.273)
S 6 12(6 11) 0	15(0.15)	0.52(0.52)	0.11(0.10)	1000.	0.067(0.089)	0.059(0.049)	0.177(0.174)	0.004(0.011)
	30(0.13)	0.77(0.45)	0.20(0.08)	1000.	0.000(0.000)	0.001(0.000)	0.000(0.000)	0.000(0.000)
10 7.54(7.61) 0	.08(0.08)	0.26(0.20)	0.07(0.06)	2200.	0.277(0.404)	0.123(0.092)	0.481(0.547)	0.080(0.248)
11 5.41(5.42) D	22(0.20)	0.93(0.83)	0.15(0.14)	800.	0.037(0.076)	0.054(0.041)	0.172(0.147)	0.013(0.018)
12 7.18(7.17) 0	.14(0.15)	0.51(0.49)	0.10(0.09)	1800.	0.270(0.282)	0.097(0.098)	0.416(0.438)	C.109(0.120)
Q	01	JTD. ER.		90% C	DNFIDENCE INTERV	AL		
0.06(0.28	.0.	17(0.05)		0.43(0	37) 0.02(0.1	6)		

Figures not in parentheses are estimates when no imputation is carried out for cases with nissing values - methods described in the Appendices are employed; figures in parentheses are the corresponding estimates when values are imputed for missing cases.

0.17(0.05)

0.06(0.28)

TABLE 4 SYSTEM L - Missing only excluded

MODEL: Log EV

	TASK E	FFECTS	TASK "ST	rd. DEVS."		TASK	RISKS	90% CON	FIDENCE ERVAL
TASK	η_k	STD. ER.	ۍ لا	STD. ER.	MOUNIM	RISK	STD. ER.	UPPER	LOWER
-10020000000000000000000000000000000000	3.51(3.69) 3.80(4.24) 5.32(5.96) 5.32(5.96) 2.64(2.72) 2.64(2.72) 5.90(6.185) 5.14(4.75) 5.26(7.58) 7.19(7.26)	0.2860.230 0.3860.233 0.4960.233 0.2560.233 0.2560.185 0.2560.185 0.2560.185 0.12760.185 0.12760.185 0.12760.185 0.12760.115 0.12560.115 0.2560.115 0.2560.115 0.12560.115 0.12560.115 0.12560.115 0.2560.11500.115	0.65(0.66) 0.96(0.80) 0.755(0.62) 0.55(0.62) 0.55(0.49) 0.55(0.49) 0.55(0.49) 0.55(0.49) 0.55(0.49) 0.55(0.49) 0.55(0.50) 0.55(0.79) 0.55(0.79) 0.51(0.79) 0.52(0.79) 0.55(0.79)	0.13(0.12) 0.20(0.14) 0.27(0.08) 0.11(0.09) 0.11(0.09) 0.13(0.05) 0.13(0.05) 0.13(0.05) 0.13(0.05) 0.13(0.05) 0.17(0.15) 0.17(0.15) 0.17(0.15) 0.17(0.15)	800. 800. 800. 800. 800. 1000.	0,102(0,134) 0,006(0,005) 0,713(0,045) 0,713(0,045) 0,121(0,080) 0,122(0,080) 0,122(0,080) 0,135(0,046) 0,035(0,046) 0,035(0,046) 0,035(0,046) 0,035(0,046) 0,035(0,046) 0,074) 0,074) 0,270(0,249)	0.030(0.044) 0.002(0.003) 0.084(0.045) 0.015(0.045) 0.015(0.045) 0.015(0.045) 0.015(0.023) 0.015(0.023) 0.015(0.023) 0.016(0.023) 0.016(0.023) 0.016(0.023)	0.151(0.224) 0.010(0.012) 0.055(0.012) 0.055(0.025) 0.177(0.284) 0.177(0.284) 0.177(0.284) 0.125(0.085) 0.125(0.085) 0.125(0.115) 0.259(0.115) 0.259(0.1352)	0.063(0.062) 0.0044(0.002) 0.0292(0.082) 0.0344(0.063) 0.0756(0.093) 0.0756(0.093) 0.0756(0.093) 0.024(0.024)
MODEL	β 0.42(0 : Log N	. 33)	STD. ER. .1000.04)		90% (UPPI) UPPI 0.49(1	CONFIDENCE INTERV ER LOWER 0.36) 0.26(0.2	AL 23)		
	TASK EF	FFECTS	TASK "ST	D. DEVS."		TASK	RISKS	90% CON	IFIDENCE

Z

	TASK EF	FECTS	TASK "ST	D. DEVS."		TASK	RISKS	90% CDN INT	FIDENCE ERVAL	
TASK	$\mu + \nu_k$	STD. ER.	σ_k	STD. ER.	MINDOM	RISK	STD. ER.	UPPER	LOWER	
-1	3.56(3.60)	0.25(0.23)	0.91(0.81)	0.16(0.14)	80.	0.183(0.182)	0.085(0.082)	0.339(0.325)	0.051(0.049)	
~	4.13(4.20)	0.23(0.18)	0.94(0.79)	0.15(0.12)	600.	0.008(0.004)	0.014(0.006)	0.039(0.017)	0.000(0.000)	
м	3.94(4.00)	0.18(0.16)	0.69(0.57)	0.11(0.10)	160.	0.051(0.046)	0.049(0.036)	0.162(0.121)	0.003(0.006)	
5	5.94(5.91)	0.19(0.13)	0.60(0.47)	0.12(0.09)	100.	0.987(0.991)	0.031(0.010)	1.000(1.000)	0.898(0.970)	
Ś	4.50(4.59)	0.18(0.14)	0.68(0.53)	0.12(0.10)	200.	0.123(0.120)	0.069(0.055)	0.261(0.220)	0.022(0.037)	
9	2.62(2.64)	0.13(0.14)	0.52(0.52)	0.09(0.09)	20.	0.239(0.275)	0.094(0.082)	0.383(0.387)	0.089(0.129)	
~	4.59(4.78)	0.11(0.12)	0.40(0.44)	0.08(0.07)	120.	0.312(0.492)	0.103(0.096)	0.469(0.655)	0.152(0.315)	
60	6.12(6.08)	0.14(0.14)	0.52(0.49)	0.11(0.10)	1000.	0.066(0.072)	0.062(0.043)	0.176(0.145)	0.003(0.006)	
6	4.72(4.70)	0.55(0.31)	1.75(1.26)	0.33(0.20)	1000.	0.106(0.043)	0.071(0.033)	0.254(0.106)	0.011(0.005)	
10	7.54(7.60)	0.09(0.08)	0.26(0.21)	0.07(0.07)	2200.	0.277(0.396)	0.125(0.092)	0.501(0.540)	0.082(0.240)	
11	5.41(5.42)	0.22(0.21)	0.93(0.87)	0.18(0.15)	800.	0.087(0.084)	0.057(0.044)	0.186(0.159)	0.014(0.021)	
12	7.18(7.19)	0.14(0.15)	0.51(0.48)	0.10(0.09)	1800.	0.270(0.295)	C.098(0.100)	0.414(0.462)	0.110(0.130)	
	đ	S	TD. ER.		90% CI	DNFIDENCE INTERV	AL			
	0.06(0.	29) 0.	22(0.06)		0.48(0	.38) 0.02(0.1	8)			

Figures not in parentheses are estimates when no imputation is carried out for cases with missing values - methods described in the Appendices are employed; figures in parentheses are the corresponding estimates when values are imputed for missing cases.

SYSTEM D - Missing only excluded

	TASK EF	FECTS	TASK "ST	D. DEVS."		TASK	RISKS	90% CON	FIDENCE ERVAL
TASK	ηk	STD. ER.	Ωn ×	STD. ER.	MOQNIM	RISK	STD. ER.	UPPER	LOWER
10020000000	2.44(2.45) 5.91(5.75) 5.92(5.75) 6.96(7.75) 6.96(7.75) 5.77(5.78) 5.77(5.78) 5.76(5.47) 5.77(5.47)	0.17(0.17) 0.14(0.13) 0.47(0.13) 0.47(0.13) 0.16(0.13) 0.12(0.12) 0.25(0.25) 0.25(0.25) 0.25(0.25) 0.16(0.13) 0.16(0.13)	0.41(0.41) 0.34(0.34) 0.34(0.34) 1.00(0.81) 0.38(0.24) 0.56(0.26) 0.56(0.26) 0.66(0.44) 0.44(0.44) 0.26(0.26)	0.09(0.10) 0.09(0.09) 0.31(0.20) 0.11(0.08) 0.11(0.08) 0.16(0.15) 0.16(0.15) 0.15(0.15) 0.15(0.15) 0.16(0.15)	4500 20000 20000 20000 20000 110000 17000	$\begin{array}{c} 0 & 027(0 & 029) \\ 0 & 093(0 & 095) \\ 0 & 037(0 & 098) \\ 0 & 037(0 & 008) \\ 0 & 037(0 & 008) \\ 0 & 037(0 & 008) \\ 0 & 037(0 & 008) \\ 0 & 012(0 & 022) \\ 0 & 012(0 & 021) \\ 0 & 018(0 & 019) \\ 0 & 019(0 & 019) \\ 0 & 01$	0.025(0.029) 0.047(5.048) 0.009(0.028) 0.019(0.029) 0.017(0.019) 0.017(0.019) 0.017(0.019) 0.017(0.019) 0.014(0.019) 0.014(0.015)	0.085(0.091) 0.166(0.177) 0.075(0.019) 0.075(0.088) 0.059(0.088) 0.059(0.066) 0.059(0.066) 0.06500010 0.048(0.057) 0.048(0.057) 0.048(0.057)	$\begin{array}{c} 0.008(0.006)\\ 0.037(0.035)\\ 0.037(0.035)\\ 0.019(0.012)\\ 0.018(0.012)\\ 0.010(0.012)\\ 0.010(0.010)\\ 0.010(0.010)\\ 0.005)\\ 0.005(0.005)\\ 0.002(0.001)\\ 0.005)\\ 0.002(0.001)\\ 0.001\\ 0.005)\\ 0.002(0.001)\\ 0.005)\\ 0.002(0.001)\\ 0.001\\ 0.002(0.001)\\ 0.001\\ 0.002\\ 0.001\\ 0.002\\ 0.001$
	β 0.17(0.	.17) 0.	STD. ER. .05(0.05)		90% C UPPE 0.27(0	ONFIDENCE INTERV R LOWER .28) 0.11(0.1	AL 2)		
MODEL	: Log N								
	TASK EI	FECTS	TASK "ST	D. DEVS."		TASK	RISKS	90% CON INT	FIDENCE ERVAL
			Ē		11001111	2010	010 01-0		

)						INI	ERVAL
TASK	л + Ц	STD. ER.	σ_k	STD. ER.	MOGNIM	RISK	STD. ER.	UPPER	LOWER
-10	2.37(2.37) 5.61(5.61)	0.12(0.11)	0.43(0.39) 0.43(0.50)	0.10(0.10) 0.09(0.11)	22. 450.	0.049(0.036) 0.127(0.161)	0.043(0.036) 0.093(0.102)	0.125(0.100) 0.325(0.352)	0.000(0.001) 0.014(0.029)
110 0	5.87(5.87)	0.07(0.08)	0.22(0.24)	0.05(0.08)	600. 1000.	0.011(0.016) 0.087(0.073)	0.040(0.029) 0.064(0.056)	0.104(0.086) 0.185(0.176)	0.000(0.000) 0.002(0.004)
۲u	(16.9)68.9	0.14(0.14)	0.45(0.51)	0.10(0.11)	2000.	0.061(0.092)	0.049(0.057)	0.147(0.183)	0.001(0.007)
01-	5.69(5.69) 4.27(4.27)	0.07(0.09)	0.73(0.71)	0.18(0.17)	200.	0.081(0.075)	0.062(0.058)	0.191(0.185)	0.002(0.001)
60	5.64(5.64)	0.25(0.23)	0.81(0.73)	0.21(0.19)	1000.	0.059(0.043)	0.052(0.043)	0.158(0.138)	0.001(0.000)
6	6.06(6.06)	0.15(0.12)	0.43(0.36)	0.09(0.09)	1000.	0.025(0.011)			
10	6.86(6.86)	0.11(0.09)	0.34(0.29)	0.00.0.00.0	. UU . I	120.01000.0	0.000.01/40.0	<pre>/ TKD . D \ K h T . D</pre>	
	G G		STD. ER.		90% C	ONFIDENCE INTERV R LOWER	AL		
	0.06(0.	0 (20)	.09(0.05)		0.21(0	.20) 0.01(0.0	1)		

Figures not in parentheses are estimates when no imputation is carried out for cases with missing values - methods described in the Appendices are employed; figures in parentheses are the corresponding estimates when values are imputed for missing cases. TABLE 6 SYSTEM D - Missing non-standard, excluded

MODEL: Log EV

FIDENCE ERVAL	LOWER	0.017(0.012) 0.042(0.038) 0.014(0.001) 0.014(0.0001) 0.011(0.0001) 0.011(0.001) 0.011(0.001) 0.011(0.001) 0.011(0.001) 0.001(0.001) 0.004(0.001)	
90% CON	UPPER	0.087(0.117) 0.185(0.184) 0.051(0.028) 0.056(0.066) 0.010(0.015) 0.010(0.015) 0.015(0.076) 0.055(0.076) 0.055(0.076) 0.023(0.025) 0.023(0.026)	
RISKS	STD. ER.	0.024(0.030) 0.07(0.009) 0.017(0.009) 0.017(0.019) 0.017(0.019) 0.013(0.019) 0.013(0.016) 0.013(0.016) 0.012(0.016) 0.017(0.009) AL	
TASK	RISK	0.09460.0499) 0.09460.099) 0.02860.099) 0.02860.031) 0.02860.031) 0.02860.031) 0.02860.031) 0.02860.031) 0.02860.031) 0.02860.0030) 0.01860.019) 0.01860.019) 0.00960.0090) 0.00960.0090 0.00960.0090 0.00960.0090 0.00960.0090 0.00960.0090 0.00060.0000 0.00060.0000 0.00060 0.00070 0.00000000	
	MODNIM	22. 450. 2000. 2000. 2000. 1000. 1700. 0.3300 0.3300	
D. DEVS."	STD. ER.	$\begin{array}{c} 0 & 10(0 & 10) \\ 0 & 08(0 & 09) \\ 0 & 37(0 & 16) \\ 0 & 11(0 & 06) \\ 0 & 12(0 & 07) \\ 0 & 12(0 & 14) \\ 0 & 12(0 & 15) \\ 0 & 06(0 & 06) \\ 0 & 06(0 & 06) \\ \end{array}$	
TASK "ST	ۍر کېږ	0.42(0.43) 0.33(0.34) 0.73(0.56) 0.77(0.56) 0.77(0.26) 0.57(0.26) 0.58(0.26) 0.58(0.26) 0.54(0.26) 0.55(0.26) 0.54(0.26) 0.24(0.26) 0.24(0.26) 0.24(0.26) 0.24(0.26) 0.24(0.26) 0.26(0.06)	
FECTS	STD. ER.	0.18(0.17) 0.13(0.15) 0.55(0.15) 0.55(0.12) 0.12(0.12) 0.12(0.12) 0.12(0.12) 0.12(0.12) 0.12(0.12) 0.18(0.11) 0.18(0.11) 0.09(0.10) 22) 22) 0.09(0.10)	
TASK EF	η_k	2.42(2.44) 5.73(5.73) 5.55(5.99) 6.95(6.99) 6.91(6.91) 6.91(6.90) 6.91(6.90) 6.91(6.90) 6.91(6.90) 78(5.29) 6.91(6.90) 78(5.20) 6.91(6.90)	: Log N
	TASK	-000400000	MODEL

ΜΟ

	TASK EF	FECTS	TASK "ST	D. DEVS.		TASK	RISKS	90% CON INT	FIDENCE ERVAL
TASK	$\mu + v_k$	STD. ER.	σ_k	STD. ER.	MOGNIM	RISK	STD. ER.	UPPER	LOWER
-0	2.37(2.37) 5.61(5.61)	0.12(0.11)	0.44(0.37) 0.44(0.49)	0.10(0.10)	22. 450.	0.048(0.034) 0.130(0.163)	0.042(0.034) 0.094(0.102)	0.123(0.094) 0.320(0.356)	0.00000.0000
5	5.87(5.87) 5.94(5.98) 6.80(6.98)	0.25(0.13)	0.22(0.25) 0.68(0.45) 0.66(0.52)	0.20(0.10)	1000.	0.078(0.023) 0.078(0.023)	0.073(0.028)	0.199(0.086) 0.153(0.190)	
101	5.69(5.69)	0.07(0.10)	0.22(0.30)	0.18(0.17)	200.	0.001(0.016)	0.019(0.028)	0.020(0.081)	0.000(0.000)
000	5.18(5.22) 6.06(6.06)	0.27(0.14)	0.64(0.41)	0.19(0.12) 0.09(0.08)	1000.	0.024(0.011)	0.014(0.001) 0.046(0.026)	0.035(0.002) 0.117(0.074)	0.00000.0000000000000000000000000000000
10	6.86(6.86)	0.11(0.10)	0.34(0.30)	0.07(0.09)	1700.	0.048(0.038)	0.046(0.041)	0.143(0.122)	0.003(0.002)
	Q ₆₀		STD. ER.		90% C	ONFIDENCE INTERV	AL		
	0.08(0.	13) 0.	.03(0.06)		0.18(0	.24) 0.01(0.0	5)		

Figures not in parentheses are estimates when no imputation is carried out for cases with missing values - methods described in the Appendices are employed; figures in parentheses are the corresponding estimates when values are imputed for missing cases.

MODEL: Log EV

	TASK EF	FECTS	TASK "ST	D. DEVS."		TASK	RISKS	90% CON INT	FIDENCE ERVAL
TASK	ηĻ	STD. ER.	л К	STD. ER.	MDONIM	RISK	STD. ER.	UPPER	LOWER
111 21000/0/0010	3.61(3.74) 3.87(4.07) 4.53(4.07) 4.57(2.76) 7.67(2.76) 7.67(2.21) 7.35(5.54) 7.35(5.54) 7.35(5.54)	$\begin{array}{c} 0.22(0.19)\\ 0.22(0.16)\\ 0.24(0.16)\\ 0.24(0.16)\\ 0.24(0.11)\\ 0.21(0.11)\\ 0.21(0.11)\\ 0.22(0.11)\\ 0.27(0.12)\\ 0.17(0.22)\\ 0.177(0.12)\\ 0.22\end{array}$	0.70(0.67) 0.68(0.61) 0.58(0.61) 0.58(0.49) 0.52(0.32) 0.46(0.32) 0.65(0.46) 0.82(0.77) 0.46(0.41) 0.46(0.41)	0.13(0.12) 0.13(0.12) 0.07(0.10) 0.07(0.06) 0.13(0.06) 0.12(0.08) 0.13(0.06) 0.19(0.16) 0.19(0.06)	11000 2200 2200 2200 2200 22000 1800	0.118(0.142) 0.034(0.041) 0.034(0.191) 0.134(0.191) 0.175(0.430) 0.039(0.052) 0.045(0.056) 0.1945(0.056) 0.192(0.245)	0.035(0.043) 0.012(0.020) 0.020(0.038) 0.025(0.038) 0.035(0.038) 0.035(0.028) 0.015(0.028) 0.015(0.028) 0.019(0.026) 0.044(0.073)	0.184(0.222) 0.054(0.073) 0.091(0.140) 0.189(0.281) 0.189(0.281) 0.274(0.605) 0.070(0.099) 0.084(0.1045) 0.84(0.1045) 0.272(0.275)	0.074(0.079 0.019(0.017 0.028(0.1027) 0.028(0.1127) 0.028(0.1273 0.127(0.273 0.127(0.273) 0.024(0.021) 0.024(0.021) 0.027(0.155) 0.125(0.1155) 0.125(0.1155)
	β.3000.	28) 0	STD. ER. .07(0.06)		90% C UPPE 0.43(0	ONFIDENCE INTERV R LOWER .37) 0.20(0.2	/AL 20)		

Model: Log N

	TASK EF	FECTS	TASK "ST	D. DEVS."		TASK	RISKS	90% CON	FIDENCE ERVAL
TASK	$\mu + \nu_k$	STD. ER.	σ_k	STD. ER.	MOGNIM	RISK	STD. ER.	UPPER	LOWER
1	3.56(3.60)	0.23(0.22)	0.91(0.84)	0.16(0.15)	80.	0.183(0.189)	0.078(0.077)	0.313(0.308)	0.052(0.058)
M	3.94(4.01)	0.17(0.14)	0.69(0.56)	0.14(0.12)	160.	0.051(0.043)	0.042(0.034)	0.139(0.116)	0.002(0.004)
ιŋ	4.50(4.59)	0.17(0.13)	0.69(0.51)	0.11(0.09)	200.	0.124(0.111)	0.064(0.056)	0.233(0.212)	0.029(0.028)
9	2.63(2.65)	0.15(0.16)	0.52(0.56)	0.10(0.11)	20.	0.238(0.289)	0.102(0.097)	0.448(0.500)	0.086(0.154)
-1	4.59(4.74)	0.12(0.11)	0.40(0.38)	0.08(0.07)	120.	9.310(0.460)	0.119(0.101)	0.492(0.598)	0.105(0.252)
00	6.12(6.12)	0.14(0.14)	0.52(0.53)	0.11(0.11)	1000.	0.065(0.094)	0.051(0.056)	0.160(0.210)	0.003(0.014)
10	7.46(7.56)	0.11(0.09)	0.39(0.25)	0.09(0.07)	2200.	0.276(0.358)	0.102(0.097)	0.455(0.510)	0.128(0.204)
[]	5.41(5.42)	0.23(0.20)	0.94(0.80)	0.16(0.13)	800.	0.087(0.068)	0.048(0.040)	0.166(0.144)	0.012(0.010)
12	7.18(7.18)	0.13(0.13)	0.51(0.54)	0.09(0.0%)	1800.	0.271(0.301)	0.095(0.083)	0.435(0.431)	0.109(0.175)
	G ₆₀		STD. ER.		90% C	ONFIDENCE INTERV	٦٢		
	0.05(0.	27) 0	.14(0.07)		0.35(0	.36) 0.02(0.13	2)		

Figures not in parentheses are estimates when no imputation is carried out for cases with missing values - methods described in the Appendices are employed; figures in parentheses are the corresponding estimates when values are imputed for missing cases. TABLE 8 SYSTEM L - Missing non-standard, excluded - Tasks 2,4,9 excluded

MJDEL: Log EV

	TASK EF	FECTS	TASK "ST	D. DEVS.		TASK	RISKS	90% CON INT	FIDENCE ERVAL
TASK	η _k	STD. ER.	л, К	STD. ER.	MOGNIM	RISK	<pre>{ STD. ER.</pre>	UPPER	LOWER
ы ю к	3.31(3.62) 3.87(4.08) 4.39(4.68)	0.28(0.18) 0.20(0.17) 0.2100.17)	0.74(0.61) 0.67(0.61) 0.58(0.50)	0.17(0.12) 0.13(0.11)	80. 160.	0.067(0.089) 0.035(0.041) 0.054(0.078)	0.017(0.029) 0.014(0.020) 0.019(0.040)	0.098(0.143) 0.059(0.081) 0.093(0.158)	0.043(0.046) 0.020(0.018) 0.032(0.030)
101	2.68(2.76)	0.11(0.09)	0.32(0.32)	0.07(0.06)	20.	0.140(0.196)	0.038(0.052) 0.034(0.105)	0.214(0.277)	0.092(0.117) 0.126(0.247)
~~~ [	6.00(6.21) 7.31(7.62)	0.21(0.13)	0.53(0.45)	0.13(0.08)	2200.	0.039(0.051) 0.108(0.323)	0.015(0.028)	0.067(0.103) 0.155(0.480)	0.023(0.022) 0.078(0.190)
12	5.35(5.55) 7.14(7.28)	0.27(0.22)	0.81(0.76)	0.19(0.16)	800.	0.045(0.057) 0.187(0.246)	0.021(0.026) 0.048(0.070)	0.077(0.110) 0.278(0.357)	0.024(0.027) 0.117(0.150)
	β		STD. ER.		90% C	ONFIDENCE INTER'	VAL		
	0.31(0.	28) 0	.07(0.06)		0.44(0	.38) 0.22(0.	19)		
Model	: Log N								

ž

	TASK EF	FECTS	TASK "ST	D. DEVS."		TASK	RISKS	90% CON	FIDENCE Erval
TASK	$\mu + v_k$	STD. ER.	$\mathfrak{q}_k$	STD. ER.	MDONIM	RISK	STD. ER.	UPPER	LCNER
-	3.40(3.47)	0.23(0.21)	0.86(0.81)	0.16(0.14)	80.	0.129(0.144)	0.074(0.065)	0.245(0.245)	0.021(0.038)
ഹം	5.95(4.01) 4.50(4.59)	0.17(0.13)	0.68(0.51)	0.11(0.08)	200.	(1CD.0)2CD.0	0.072(0.053)	0.276(0.194)	0.036(0.030)
9	2.63(2.65)	0.15(0.16)	0.52(0.56)	0.10(0.11)	20.	0.240(0.293)	0.102(0.098)	0.453(0.503)	0.095(0.150)
2	4.59(4.72)	0.12(0.11)	0.39(0.37)	0.08(0.06)	120.	0.309(0.445)	0.119(0.100)	0.494(0.593)	0.117(0.251)
60	6.12(6.13)	0.14(0.14)	0.52(0.51)	0.11(0.10)	1000.	0.066(0.092)	0.071(0.054)	0.251(0.199)	0.007(0.017)
10	7.54(7.63)	0.07(0.07)	0.26(0.10)	0.07(0.06)	2200.	0.278(0.418)	0.110(0.102)	0.475(0.588)	0.138(0.270)
11	5.41(5.42)	0.23(0.21)	C.93(0.82)	0.16(0.14)	800.	0.086(0.073)	0.057(0.041)	0.194(0.143)	0.012(0.009)
12	7.18(7.18)	0.13(0.13)	0.51(0.50)	0.09(0.07)	1800.	0.270(0.293)	0.097(0.081)	0.439(0.417)	0.130(0.169)
	G ₆₀	01	STD. ER.		90% 0	ONFIDENCE INTERV	AL		
	0.06(0.	29) 0.	.31(0.06)		0.65(0	.36) 0.03(0.1	8)		

Figures not in parentheses are estimates when no imputation is carried out for cases with missing values - methods described in the Appendices are employed; figures in parentheses are the corresponding estimates when values are imputed for missing cases.



Figure 1. Uniform Residuals System L, Model: Log N, no imputation

.



# Figure 2. Uniform Residuals System L, Model: Log N, imputation



Figure 3. Uniform Residuals System L, Model: Log EV, no imputation

Residuals	Log EV, imputation
Uniform	Model:
Figure 4.	System L.

FRED S	UENCIES 1 4 0 5	9 5 6	7 30 0 4	SAMPLE SIZE	* 216 9 0 0	6 10 6	6 7 10	3 5 0	9 6 12	14 0	FREOL	JEHCJES 2 5 33 34		7 11	•	.AMPLE 5178 7 4 6	+ 216	e 5	5 9	1 10	9 1	r 9	4	~
			· · ·				= 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•		0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0		• • • • • • • • • • • • • • • • • • • •					:
			• •																					
190.					5.8									140										
											.051			-										
					- 1								•						_	-				
50										<i></i>				*				-		:				-
					. *																			
					Ĭ						. 04				1114									
							:											:						
· 0											1			:	:	•				ŧ	1 a			
	8 8		0.0		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																			
	0 0 8		0.0 . 0.0				10 10 10																	
	2 1		0.00								. 03	10 111 111				-	:				:	-	:	;
		1.0	7 P. 1 P. 1 P. 1																					
. 031		104 001	h IT-0, 10-0																					
	4 × 4	100 011	1 24. 200				10 000 000															:		
		100 000 000 000 000 000 000 000 000 000			100 100 100 100 100 100 100 100 100 100						1000 000					-			:			:	:	-
		TPT TOT TOT	F F			. 1					. 02 lass m													
0 0 8			9 24°, 25°		*** TO TO															-		1		
0.21288				1 1 1																				
	211 000 000	TOD 000 TOT 001	1 00. 001 000		- 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																			
0 0 0	100 000 000	100 101 100 001																		1				8
							VER ORD FOR 0		1 100 111 11.		1									. 88	-			
										0 1 0 1 0 1														
8 8		PRO BOR DES BUCK	0.017 Ref. 810.	1111 111	F00 01F 40.						.011													1
. 0 1 1 8 4 8				0.01					5 3 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					:				10 010 141		ŧ				
																								• •
• • •	0 0 0 0 0 0 0 0 0 0 0	901 000 000 FBF	T		TON POOL DO-																			
		F10 040 F10 B01	T BE, BRE FOR	*** ***	FOR 000 00-		10 002 150 054				ITAR IN										-			1
			1 10. 101 100									B 161 08 80									-			i.
		000.0000000000000000000000000000000000																						
	1 0 010					+		-	-	-	_	_		-	-	-	-	_	_	-		_	-	
****	ACT 10	107 A. 141 A	1 0 CT11 0	af., 0.111	0.501 0.	543 0.625	0.687 0.74	0.011	0.873 0.9	12 0.007	0.005	9.064 0.123	0.111	0.240	299 0.3	50 0.416	0.475	0.538 0	.9 645.	53 0.7	0.768	C.020	0.887 0.	874
CENTRAL TE	THDENCY	STREAD		HIGNER CEN	TEAL MOMENT	5 DISTRIB	UTION				CENTRAL TE	NDENCY	SPREA			MICHER CI	HTRAL HONI	1419 D1	51R1RU1101					
ME DIAM	0 565530		1.206004 1.206004	14 14	0.358299E-0 9.117857E-0	2 NINIMUM	WTILE	0.5582451-	0.7		MEAN	0.439573	VAR1A 010 L	4CE 0.75 EV 0.27	5560E-01 4076	Ги Ли	0.103558	1u 20-	NIRUN OUAN7ILE		0.51522	33-02 21-02		
MIONEAN	0.567096	NEAN DEV 0	1.247912	RUR10518	-1.240	AUD 02. 0	WILL INCOLAND	0.569530			MIDHEAN	0.424629	A A A A	VAR DEV 0.23	7900	BRENNESS BURTOSIS	1	2. 030	B BURWTILL	INT NINGE I	0.19870			
MIORANGE OTON MEAN	0 501409	MIDSPREAD D	0.971653	PETA1 -	0.3533386-0	75 QUA	WILLE IMINGED	0 014304			MIDRANGE	0 A75217	RANGE	0 0	4210	0E1A1	0.3359530	-02	5 0UAM7316	(MINCE	0.60070			
HARM MEAN	559332			100	V. 4413636-0	NUMITYM .	ALLER.	0.007235			MARM MEAN	0.14410	1010	4EAU 0.47	1/00	BLIAZ	0.1032136		E BUANTJL]		0 014528			
													÷							4				
						•					8 8 8 8					÷								
NI 0 7 OC RAM	OF F11.R1 - RE1	SIDVALS									M1S70CRAM	Dr FIJ.KI - 1	TASIBUALS					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
RESSOUALS	- RAN DATA										RESIDUALS	- BOOTSTRAF	101	100										

			MICHER CENTRAL HOMENTS 015TRIBUTION N3 0-1800446-02 PTNTHU# N3 0-1800446-02 PTNTHU# 0.08615-02 004NNTLE NTHU# 0.0645 25 00ANTLE NTHU# 0.1382675-02 00ANTLE NTHUF 0.1382675-02 00ANTLE NTHUF 0.1382675-01 00ANTLE NTHUF 0.098003 AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXIMUH AAXI
	 	0.1-1 0.1-0 0.1-0 0.1-0 0.1-0 0.1-0 0.1-0	PARLAD VARIANCE 0.920537L-01 VARIANCE 0.930-07 COLF VAR REAT 0.103-07 REAT 0.254250 REAT 0.554250 H105PRLAD 0.554250 H105PRLAD 0.554250
* · · · · · · · · · · · · · · · · · · ·	 8 0.		CENTRAL TENOEHCY NEAN NEAN NEAN TRIVEN TRIVEN CONTRAN CONTRAN CONTRAN CONTRAN NARN NEAN O. 1197755 CONTRAN NARN NEAN O. 1197755
			000006+00 16006-02 2573 2573 6532 6532 2517 9939
۰ <b>۰</b>		§	STATEUTION STATUTION 0 UNATILE (NIMEE) 0 UNATILE (NIMEE) 0 UNATILE (NIMEE) 0 UNATILE (NIMEE) 0 UNATILE (NIMEE) 0 UNATILE (NIMEE) 1 UNATILE
2 2 3 2 8 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	 		HIGHER CENTRAL HOMENTS 015TRIBUTION 13 -0.16874-02 MININULU 14 0000 14 0000 15 0000 10 0000 10 0000 10 0000 11 0000 12 00000 12 0000 12 00000 12 0000 12 00000 12 0000 12 00000 12 000000
	 		SPREAD         MICHER CENTRAL MOMENTS         OLSTRIBUTION           VARIANCE         0.963100E-01         d3         0.010330           VARIANCE         0.963100E-01         d3         0.010330           STD REV         0.010330         0.010330         0.0008           STD REV         0.110330         0.0008         0.0008           STD REV         0.110330         0.0008         0.0008           STD REV         0.010330         0.010330         0.0008           STD REV         0.010330         0.010330         0.0008           STD REV         0.010330         0.010330         0.0008           STR NO         0.0008         0.0008         0.0008           STR NO         0.0008         0.0008         0.0008           STR NO         0.0008         0.010331E         0.0104           STR NO         0.010331E         0.0104         0.0104           STR NO         0.0104         0.0104         0.0104           STR NO         0.

Figure 5. Uniform Residuals System D, Model: Log N, no imputation

ý

						0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0         0           0         0         0         0         0         0         0         0           0         0         0         0         0         0         0         0         0           0         0         0         0         0         0         0         0         0         0         0
2 						A 0.672 0.791 A 0.672 0.791 A 0.692 0.912 A 0.912024 A 0.91204 A 0.91204
		* * * * * * *				0.198 0.999110E-01 0.198 0.909110E-01 0.00101312 0.00101312 0.00101312 0.0010123 0.0010123 0.0010123 0.0010123 0.0010123 0.0010123 0.0010123 0.0010123 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00100 0.0010 0.0010 0.00100
						7         202         90           0.202         90         90           1.202         90         90           2.202         90         90           2.202         90         90           2.202         90         90           2.202         90         90           2.203         90         90           2.519         914         914           2.514         914         914           3.514         914         914           3.514         914         914           3.514         914         914
	80.	.07	. 0 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	05 10 10 10 10 10 10 10 10 10 10 10 10 10	20 20 10 10 10 10	0.005 0.104 CENTRAL TENEENC CENTRAL TENEENC FROM FROM FROM FROM FROM FROM FROM FROM
						00,255,400,00 200,200,00 200,000,00 200,000,00 200,000,0
						0.995 0.995 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0
						CENTRAL MUMERINE DISTRIBUTION CENTRAL MUMERINE DISTRIBUTION -0.457158-02 MINIMUM 0.1179085-031 DOUNTILE (MUMER) 0.2992265 -0.45555-031 DOUNTILE (MUMER) 0.2992255 -0.1179085-01 MUMILE (MUMER) 0.995250 MAXIMUM
						PRE0         HICHER CENTRAL MONENTS         0.795         0.795         0.795         0.795           PRE0         HICHER CENTRAL MONENTS         D151818U110M         0.7234496-05         0.795           ARIANCE         0.7001225-01         H3         0.4531585-02         M101MM         0.7234496-05           ARIANCE         0.70012255-01         H3         0.4531585-02         M101MM         0.7234496-05           ARIANCE         0.755703         H3         0.4531585-02         M101MM         0.7234496-05           D105 NELAD         H3         0.1179995-02         M101MM         0.7235476         0.7997257-01           D106 NF         0.25793         H3         0.1179997-02         M1111E         0.7997257-01           D05 NELAD         0.25133         -0.41179997-01         90 0.01111E         0.9952567-01           D05 NELAD         0.1179997-01         90 0.01111E         0.9952567-01         0.9952567-01           D105 NELAD         0.1179997-01         90 0.01111E         0.995256-01         0.9952567-01           D11 NO         0.255353         0.1179997-01         90 0.01111E         0.995256-01           D11 NO         0.255353         0.1179997-01         90 0.995256-01         0.9952556-01
						BOD 0.191 0.291 0.381 0.401 0.391 0.391 0.391 0.391 0.391         BOD 0.191 0.291 0.391 0.391 0.391 0.391 0.391 0.391 0.391         BOD 0.191 0.291 0.391 0.391 0.391 0.391 0.391 0.391         BOD 0.191 0.291 0.391 0.391 0.391 0.391 0.391 0.391         BOD 0.191 0.301 0.300 0.391 0.391 0.391 0.391 0.391 0.391 0.393         BOD 0.191 0.300 0.3191 0.391 0.391 0.391 0.391 0.391 0.393         BOD 0.191 0.300 0.300 0.391 0.391 0.311 0.011110 0.300 0.391 0.391 0.391 0.393         BOD 0.191 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.31110 0.3

Figure 6. Uniform Residuals

	2.63 196 E-02 2.63 196 E-01 197 129 2.68 E-01 2.52 6.84 2 2.52 6.84 2 2.52 6.33 97 119 3 97 119 3
1. o. o	DISTRIBUTION MINITUR MINITUR 22 OLAWTIEL HINGE! 25 OLAWTIEL HINGE! 0. 25 OLAWTIEL HINGE! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	AL MOMENTS 122546-01 122546-01 122546-01 122746 1221516-01 1217116-01 1217116-01
	HICHER CENTR M3 0. N41 N42 N42 N42 N42 N42 N42 N42 N42 N42 N42
	862755-01 287599 96879 96879 518765 518765
06h 	5PREA0 VRRJANCE 0. VRRJANCE 0. COEF VVR 0. RANGE 0. RANGE 0. H10558EA0 0. H10558EA0 0.
	DE MCY 5. 47747 5. 47747 5. 47747 5. 40050 5. 400500 5. 400500 5. 4005000000000000000000000000000000000
· · · · · · · · · · · · · · · · · · ·	CENTRAL TENG MEAN MEAN MEAN MEAN ATRANE MIDANGE CEONTRAN GEONTRAN GEONTRAN MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MIDANGE MID
	UTION MITLE MINEL 0.236634E-01 MITLE MINEL 0.26523 MITLE MINEL 0.25235 MITLE MINEL 0.952456 0.950079
	015 TA18 MINTHU 10 0UA - 25 0UA - 75 0UA - 75 0UA MAXINU
2 2 0 11 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HER CENTRAL MOMENTS 7352525-02 735255-02 MHESS 3825 3825 3825 3825 3825 3825 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 1025 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	01 01 01 01 00 01 00 01 00 01 00 01 00 01 00 01 00 00
• •	0.720696 0.7720696 0.772064 0.2331056 0.2331056 0.2331056 0.2331056 0.2331056 0.2331056 0.2331056 0.2331056 0.241050 0.241050 0.241050 0.241050 0.241050 0.240050 0.240050 0.240050 0.240050 0.240050 0.240050 0.240050 0.240050 0.240050 0.2720050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272050 0.272000000000000000000000000000000000
	0.315 0.414 STREAO YARIA44E YARIA44E YARIA42E RAAC EV RAAC EV
1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.124 C.220 TEMEEKCY 0.557222 0.557252 0.557252 0.54442 0.5920821 2.44 0.522608 2.44 0.522608 2.40 0.522608 2.40 0.522608 2.41 0.522608 2.41 0.522608 2.42 0.522608 2.44 0.54008 2.44 0.54008 2.44 0.54008 2.44 0.54008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.44008 2.4400
	. 027 44 44 19544 19544 19544 19544 1954 194 194 194 194 194 194 194 194 194 19

Figure 7. Uniform Residuals System D, Model: Log EV, no imputation

4

Figure 8. Uniform Residuals System D, Model: Log EV, imputation



# **INITIAL DISTRIBUTION LIST**

1.	Library (Code 0142)2 Naval Postgraduate School Monterey, CA 93943-5000
2.	Defense Technical Information Center2 Cameron Station Alexandria, VA 22314
3.	Office of Research Administration (Code 012)1 Naval Postgraduate School Monterey, CA 93943-5000
4.	Prof. Peter Purdue
5.	Department of Operations Research (Code 55)1 Naval Postgraduate School Monterey, CA 93943-5000
6.	Prof. Donald Gaver, Code OR-Gv15 Naval Postgraduate School Monterey, CA 93943-5000
7.	Prof. Patricia Jacobs1 Code OR/Jc Naval Postgraduate School Monterey, CA 93943-5000
8.	Center for Naval Analyses
9.	Dr. David Brillinger1 Statistics Department University of California Berkeley, CA 94720

# INITIAL DISTRIBUTION LIST

1.	Library (Code 0142)2 Naval Postgraduate School Monterey, CA 93943-5000
2.	Defense Technical Information Center2 Cameron Station Alexandria, VA 22314
3.	Office of Research Administration (Code 012)
4.	Prof. Peter Purdue
5.	Department of Operations Research (Code 55)1 Naval Postgraduate School Monterey, CA 93943-5000
6.	Prof. Donald Gaver, Code OR-Gv15 Naval Postgraduate School Monterey, CA 93943-5000
7.	Prof. Patricia Jacobs
8.	Center for Naval Analyses
9.	Dr. David Brillinger

10.	Dr. R. Gnanadesikan
11.	Prof. Bernard Harris1 Dept. of Statistics University of Wisconsin 610 Walnut Street Madison, WI 53706
12.	Prof. W. M. Hinich
13.	Prof. I. R. Savage
14.	Prof. W. R. Schucany1 Dept. of Statistics Southern Methodist University Dallas, TX 75222
15.	Prof. D. C. Siegmund
16.	Prof. H. Solomon
17.	Dr. Ed Wegman
18.	Dr. P. Welch

19.	Dr. Neil Gerr
20.	Prof. Roy Welsch
21.	Dr. J. Abrahams
22.	Prof. J. R. Thompson
23.	Dr. P. Heidelberger
24.	Prof. M. Leadbetter
25.	Prof. D. L. Iglehart
26.	Prof. J. B. Kadane

s

27.	Prof. J. Lehoczky
28.	Dr. J. Maar (R513)
29.	Prof. M. Mazumdar
30.	Prof. M. Rosenblatt
31.	Prof. H. Chernoff
32.	Dr. T. J. Ott
33.	Dr. Alan Weiss
34.	Prof. Joseph R. Gani
35.	Prof. Frank Samaniego

36.	Dr. James McKenna1 AT&T Bell Laboratories Mountain Avenue Murray Hill, NJ 07974
37.	Commander
38.	Prof. Tom A. Louis
39.	Dr. Nan Laird
40.	Dr. Marvin Zelen
41.	Dr. John Orav
42.	Prof. R. Douglas Martin

s

43.	Prof. W. Stuetzle
44.	Prof. F. W. Mosteller
45.	Dr. D. C. Hoaglin
46.	Prof. N. D. Singpurwalla
47.	Center for Naval Analysis
48.	Prof. George S. Fishman
49.	Dr. Alan F. Petty
50.	Prof. Bradley Efron

51.	Prof. Carl N. Morris
52.	Dr. John E. Rolph
53.	Prof. Linda V. Green
54.	Dr. David Burman
55.	Dr. Ed Coffman
56.	Prof. William Jewell
57.	Prof. D. C. Siegmund
58.	Operations Research Center, Rm E40-164

59.	Arthur P. Hurter, Jr
60.	Institute for Defense Analysis
61.	Prof. J. W. Tukey
62.	Dr. Daniel H. Wagner
63.	Dr. Colin Mallows
64.	Dr. D. Pregibon
65.	Dr. Jon Kettenring
66.	Prof. David L. Wallace
67.	Dr. S. R. Dalal

68.	Dr. M. J. Fischer
69.	Dr. Prabha Kumar Defense Communications Agency1 1860 Wiehle Avenue Reston, VA 22070
70.	Dr. B. Doshi
71.	Dr. D. M. Lucantoni
72.	Dr. V. Ramaswami
73.	Prof. G. Shantikumar
74.	Dr. D. F. Daley
75.	Dr. Guy Fayolle

S

76.	Professor H. G. Daellenbach
77.	Koh Peng Kong
78.	Professor Sir David Cox
79.	Dr. A. J. Lawrence
80.	Dr. F. P. Kelly
81.	Dr. R. J. Gibbens
82.	Dr. John Copas

83.	Dr. D. Vere-Jones
84.	Prof. Guy Latouche

s

ه م ب

ż

